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Motivation

>

Functor O : Top — Frm°®P represents spaces as frames.

v

Left adjoint ¥ : Frm®P — Top reconstructs the space:

>OX = X whenever X is sober.

S:= ({O~ 1}7 {® {1}7 {07 1}})
For any space X, OX = Top(X,S).

For any frame L,

v

v

v

YL =Frm(L,2) = {a € L| ais meet-irreducible}.



Motivation

» There are many other ways to construct frames induced by
topological spaces, e.g. with P = ([0, 00|, TScott)

Top(X,P)) = {f : (X = P) | f continuous}.

» But the spectrum of Top(X, P) is Xx]0, o], not X!

» Can we ‘mod out' ]0, 00]?



Motivation

How much/which topological information about a topological
space X can be captured by the function frame Top(X, F)
(endowed with pointwise order), and how does this depend on the
nature of F?




Topological frames

Definition
Let F be a frame endowed with a topology 7g. We call (F,7g) a
topological frame provided that the operations

AN:FxF—=F:(ab)—anb
and

sup: F' = F: (aj)ier > sup a;
icl icl

are continuous.

E.g. any chain endowed with the Scott topology is a topological
frame.



Topological frames

Definition

Let (F1,71) and (F2,72) be topological frames. A map

f:F1 — Fy is called a topological frame morphism if
f:(F1,71) — (F2,72) is continuous and f : F; — F5 is a frame
homomorphism.

We call TopFrm the category with topological frames as objects
and topological frame morphisms as morphisms.



Topological frames

Proposition
The diagram
TopFrm Top
Z/{F u Z/{Top
UFrm
Frm a Set

commutes, the functors Uop and Ur are topological, Urm is
monadic and has a left adjoint, /7 has a left adjoint and U/ is
faithful and has a left adjoint.



F-frames and F-spectra

Let X be a topological space and F a topological frame.
» [x : F— Top(X,F): a ¢, is a frame homomorphism
» Denote Frmg as the comma category F/Frm: F-frames
» Of : Top — Frm® with Op(X) =T'x and

Or(p) : Top(Y,F) — Top(X,F) : f — fo

Let L =(L,v. : F — L) be an F-frame.

» Endow Specg(L) = Frmg(L, F) with the initial topology for
the source

(ev, : FrmF(L, F) —F:f— f(/))/gL

» We obtain a functor Specg : FrmZ” — Top which is left
adjoint to OFf .



F-spatial frames and F-sober spaces

» L is F-spatial if
gL : L — Top(Frmg(L,F),F) : [ — (f — f(/))

is an isomorphism of F-frames.
» X is F-sober if

nx : X = Frmg(Top(X,F),F) : x — (f — f(x))

is a homeomorphism.

If F =S, everything reduces to the classical setting.



More on F-sobriety

proposition

X is F-sober if and only if (f : X — F)¢crop(x,F) is initial and
point-separating, and Frmg(Top(X,F),F) = {ev. | x € X}.

proposition

If X is Hausdorff and some conditions on F hold, then X is F-sober.




Some examples

3 ~{(a,8) ePxP|a>p}
3n)~{(a,B)eEnxn|a>p}
S



Some conlusions

Conclusion 1
A sober space is generally not F-sober.

Conclusion 2

The space

Specg(L)

in general fails to be F-sober.

Conclusion 3
The functor
SpeceOf : Top — Top
in general fails to be idempotent and does not give rise to an
“F-sobrification”.



Relation to F — Top

Consider the following adjunctions (D. Zhang and Y. Liu):

wE QF op
Top_ 1~ F-Top_ 1~ Frmg
LF pPte

» wpX is F-fuzzy sober 4+ some condition on X implies that X
is F-sober,

» the notions differ,

» hence F-sobriety also differs from fuzzy sobriety in the sense
of A. Pultr and S. Rodabaugh.



Some questions

» For F1,F5 in a class of topological frames with additional
properties, can we find a general description for
Specg,(Top(X,F1))? Or just for Fy = F2?

» For what conditions on F1,Fy does
X Hausdorff = X Fi-sober = X Fs-sober = X sober

hold?

» What can be said about the forgetful functors Frmg — Frm
and Frmg — Set?



Main theorem for today

Some known facts about exponential objects:
» for X sober: X is exponential in Top < X is locally compact,

» for X locally compact: the canonical topology on Top(X, Z)
is the compact-open topology.

Let X be a sober exponential topological space, F the topological
frame F = Top(Y,S) for some sober exponential space Y. Then
Spece(Or(X)) and Top(Y, X) are homeomorphic, where the latter
space carries the compact-open topology.




Main theorem

Sketch of proof:

» By the exponential law,
Top(X,F) = Top(X, Top(Y,S)) ~ Top(X x Y,S)

as spaces.

» Order taken to be pointwise and hence:
Top(X, Top(Y,S)) = Top(X x Y,S)

as topological frames.



Main theorem

» [t takes a bit of work to show that
O : Top(Y,XxY) = Frm(Top(XxY,S), Top(Y,S)) : f — O(f)

with O(f)(h) = hf is a bijection.

» Again using exponentiality, deduce that
Top(Y, X x Y) ~Top(Y,X) x Top(Y,Y).
» Show that the bottom line is a homeomorphism and restrict:

Top(Y, X)

|

TOp(Y, X) X TOp(Y, Y) -~ Frm(TOp(X, F), F)

Specg(Or(X))



Applications to (SpecgOf)"

Lemma

Let X, Y be topological spaces with X finite. Then the
compact-open topology on Top(X, Y) coincides with the initial
topology for the source

(eVX : TOp(Y,X) — Y)x€X~

Proposition

Let L, F be finite distributive lattices endowed with the Scott
topology. Then Top(L, F) = Ord(L, F) and the Scott topology
and the initial topology on Top(L, F) determined by the source
(ev; : Top(L, F) — Fi)jeL, coincide.



Application 1: (Spec;03)"(S)

Definition

A monotone Boolean function of n variables is a non-decreasing
map {0,1}" — {0,1} where {0,1}" is endowed with the pointwise
order. The set of monotone Boolean functions of n variables is
denoted by M,,.

» Note that M, = Ord(S",S) = Top(S", S).

» Since
0+~ (0,0)
Top(1,3) =3 — Top(S,S) : —(0,1)
2 (1,1)

constitutes an isomorphism of posets and hence of spaces, we
obtain that 3 = Top(S, S) as topological frames.



Application 1: (Spec;03)"(S)

The lattice of monotone Boolean functions of n variables is
isomorphic to the free distributive lattice on n generators.

(Spec303)"(S) and M,, are homeomorphic and hence isomorphic
as lattices.




Application 1: (Spec3O3)"(S)

Sketch of Proof:

» We will give a proof of the homeomorphism claim by
induction.

» Applying Theorem our main theorem with X =S,
F =3 = Top(S,S) we can see that this is true for n = 1.
» Assume that our claim holds up to some n—1 (n > 2).
Applying our main theorem with X = Top(S"~1,S) and
F =3 = Top(S,S), and the exponential law we get:



Application 1: (Spec3O3)"(S)

(Spec303)"(S) = Spec3O3((Spec;O)™1(S)
~ Spec;O3(Top(S" 1, S))
~ Top(S, Top(S"1,9))
~ Top(S",S) ~ M,,

which finishes the proof of this part.

» Since all (finite) lattices in the proof are endowed with the
Scott topology, the order isomorphism follows.



Application 2: (Spec,O,)"(S)

» Denote the antichain on n elements by A, and the free
Boolean algebra on n elements by B,,.

» Consider F = ¢ =S x S = Top(Az, S).

Top(Ayn-1,0) =2 Ord(Ayn—1,0) = B,,.

Proof:
Since the discrete and the Scott topology on A, coincide it follows

that Ord(Agn-1,0) = 02" .



Application 2: (Spec,O,)"(S)

(Spec,O,)"(S) and B, are homeomorphic and hence isomorphic as
lattices.

Sketch of Proof:

» We will give a proof of the homeomorphism claim by
induction.

» Applying Theorem our main theorem with X =S,
F = o = Top(A,S) we can see that

Spec,O4(S) = Top(As,S) = ¢ = Top(Ax, ©),

so the claim is true for n = 1.

» Assume that our claim holds up to some n—1 (n > 2).
Applying our main theorem with X = Top(Ags-2,¢) and
F =o = Top(A3,S), and the exponential law we get:



Application 2: (Spec,O,)"(S)

(Spec,0,)"(S) =

~

Spec, Oo((Spec,0s)"1(S))
Spec,Os(Top(Ay 2. 0))
Top(Az, Top(Azn-2,9))
Top(Agn-1,9) ~ By,

which finishes the proof of this part.

» Since all (finite) lattices in the proof are endowed with the
Scott topology, the order isomorphism follows.
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Happy birthday Jorge!




