# Generalized spectra and applications to finite distributive lattices

 $\label{eq:mark} \begin{array}{l} \mbox{Mark Sioen} \mbox{(Vrije Universiteit Brussel} - \mbox{VUB}) \\ \mbox{on joint work with Wendy Lowen} \ \& \ \mbox{Wouter Van Den Haute} \end{array}$ 

A day on Pointfree Topology – in honour of Prof. Jorge Picado CMUC – Universidade de Coimbra September 12, 2023

### Outline of the talk

- Motivation
- Topological frames
- ▶ **F**-frames and **F**-spectra
- Main Theorem for today
- Some consequences for free lattices

### Motivation

- Functor  $\mathcal{O} : \textbf{Top} \to \textbf{Frm}^{op}$  represents spaces as frames.
- Left adjoint  $\Sigma$  : **Frm**<sup>op</sup>  $\rightarrow$  **Top** reconstructs the space:

 $\Sigma \mathcal{O} X \cong X$  whenever X is sober.

- $\mathbb{S} := (\{0,1\}, \{\emptyset, \{1\}, \{0,1\}\})$
- For any space X,  $\mathcal{O}X \cong \text{Top}(X, \mathbb{S})$ .
- For any frame L,

 $\Sigma L = \operatorname{Frm}(L, 2) \cong \{a \in L \mid a \text{ is meet-irreducible}\}.$ 

### Motivation

► There are many other ways to construct frames induced by topological spaces, e.g. with P = ([0,∞], T<sub>Scott</sub>)

$$\mathbf{Top}(X,\mathbb{P})) = \{ f : (X \to \mathbb{P}) \mid f \text{ continuous} \}.$$

But the spectrum of Top(X, P) is X×]0,∞], not X!
Can we 'mod out' ]0,∞]?

### Motivation

#### Question

How much/which topological information about a topological space X can be captured by the function frame  $\text{Top}(X, \mathbb{F})$  (endowed with pointwise order), and how does this depend on the nature of  $\mathbb{F}$ ?

### **Topological frames**

#### Definition

Let  $\mathbb F$  be a frame endowed with a topology  $\mathcal T_{\mathbb F}.$  We call  $(\mathbb F,\mathcal T_{\mathbb F})$  a *topological frame* provided that the operations

$$\wedge : \mathbb{F} \times \mathbb{F} \to \mathbb{F} : (a, b) \mapsto a \wedge b$$

and

$$\sup_{i\in I}: \mathbb{F}^I \to \mathbb{F}: (a_i)_{i\in I} \mapsto \sup_{i\in I} a_i$$

are continuous.

E.g. any chain endowed with the Scott topology is a topological frame.

### **Topological frames**

#### Definition

Let  $(\mathbb{F}_1, \mathcal{T}_1)$  and  $(\mathbb{F}_2, \mathcal{T}_2)$  be topological frames. A map  $f : \mathbb{F}_1 \to \mathbb{F}_2$  is called a *topological frame morphism* if  $f : (\mathbb{F}_1, \mathcal{T}_1) \to (\mathbb{F}_2, \mathcal{T}_2)$  is continuous and  $f : \mathbb{F}_1 \to \mathbb{F}_2$  is a frame homomorphism.

We call **TopFrm** the category with topological frames as objects and topological frame morphisms as morphisms.

### **Topological frames**

#### Proposition

The diagram



commutes, the functors  $\mathcal{U}_{Top}$  and  $\mathcal{U}_{F}$  are topological,  $\mathcal{U}_{Frm}$  is monadic and has a left adjoint,  $\mathcal{U}_{T}$  has a left adjoint and  $\mathcal{U}$  is faithful and has a left adjoint.

#### **F**-frames and **F**-spectra

Let X be a topological space and  $\mathbb{F}$  a topological frame.

- $\Gamma_X : \mathbb{F} \to \mathbf{Top}(X, \mathbb{F}) : a \mapsto c_a$  is a frame homomorphism
- ▶ Denote **Frm**<sub>𝔅</sub> as the comma category 𝔅/**Frm**: 𝔅-frames

► 
$$\mathcal{O}_{\mathbb{F}} : \mathbf{Top} \to \mathbf{Frm}_{\mathbb{F}}^{\mathsf{op}}$$
 with  $\mathcal{O}_{\mathbb{F}}(X) = \Gamma_X$  and

$$\mathcal{O}_{\mathbb{F}}(\varphi): \operatorname{Top}(Y, \mathbb{F}) \to \operatorname{Top}(X, \mathbb{F}): f \mapsto f \varphi$$

Let  $L = (L, \gamma_L : \mathbb{F} \to L)$  be an  $\mathbb{F}$ -frame.

► Endow Spec<sub>F</sub>(L) = Frm<sub>F</sub>(L, F) with the initial topology for the source

$$(\operatorname{ev}_I : \operatorname{Frm}_F(L, \mathbb{F}) \to \mathbb{F} : f \mapsto f(I))_{I \in L}$$

▶ We obtain a functor  $\text{Spec}_{\mathbb{F}} : \operatorname{Frm}_{\mathbb{F}}^{\text{op}} \to \operatorname{Top}$  which is left adjoint to  $\mathcal{O}_{F}$ .

### $\mathbb F\text{-spatial}$ frames and $\mathbb F\text{-sober}$ spaces

#### Definition

► L is F-spatial if

$$\varepsilon_L: L o \mathsf{Top}(\mathsf{Frm}_{\mathbb{F}}(L, \mathbb{F}), \mathbb{F}): I \mapsto (f \mapsto f(I))$$

is an isomorphism of  $\mathbb F\text{-}\mathsf{frames}.$ 

```
► X is F-sober if
```

```
\eta_X : X \to \operatorname{Frm}_{\mathbb{F}}(\operatorname{Top}(X, \mathbb{F}), \mathbb{F}) : x \mapsto (f \mapsto f(x))
```

is a homeomorphism.

If  $\mathbb{F} = \mathbb{S}$ , everything reduces to the classical setting.

### More on **F**-sobriety

#### proposition

X is  $\mathbb{F}$ -sober if and only if  $(f : X \to \mathbb{F})_{f \in \operatorname{Top}(X,\mathbb{F})}$  is initial and point-separating, and  $\operatorname{Frm}_{\mathbb{F}}(\operatorname{Top}(X,\mathbb{F}),\mathbb{F}) = \{\operatorname{ev}_{X} \mid x \in X\}.$ 

#### proposition

If X is Hausdorff and some conditions on  $\mathbb{F}$  hold, then X is  $\mathbb{F}$ -sober.

### Some examples

- $\mathsf{Spec}_{\mathbb{P}}(\mathsf{Top}(\mathbb{S},\mathbb{P})) \simeq \mathbb{P}$
- $\mathsf{Spec}_{\mathbb{P}}(\mathsf{Top}(\mathbb{S}, \mathbf{n})) \simeq \mathbf{n}$
- Spec<sub>P</sub>(Top(3, P))  $\simeq \{(\alpha, \beta) \in \mathbb{P} \times \mathbb{P} \mid \alpha \geq \beta\}$
- ▶ Spec<sub>n</sub>(Top(3, n))  $\simeq$  {( $\alpha, \beta$ ) ∈ n × n |  $\alpha \ge \beta$ }
- $Spec_3(Top(S \times S, 3)) \simeq 3 \times 3$
- ► ...

### Some conlusions

#### Conclusion 1

A sober space is generally not  $\mathbb F\text{-sober}.$ 

#### Conclusion 2

The space

$$\operatorname{Spec}_{\mathbb{F}}(L)$$

in general fails to be  $\mathbb{F}$ -sober.

#### Conclusion 3

The functor

```
\mathsf{Spec}_{\mathbb{F}}\mathcal{O}_{\mathbb{F}}:\mathbf{Top}\to\mathbf{Top}
```

in general fails to be idempotent and does not give rise to an  $``\mathbb{F}\text{-sobrification''}\,.$ 

Consider the following adjunctions (D. Zhang and Y. Liu):

$$\mathsf{Top} \xrightarrow[\ell_{\mathbb{F}}]{} \mathbb{F} \operatorname{-Top} \xrightarrow[\ell_{\mathbb{F}}]{} \frac{\Omega_{\mathbb{F}}}{\underset{\mathrm{pt}_{\mathbb{F}}}{\perp}} \mathsf{Frm}_{\mathbb{F}}^{\mathsf{op}}$$

- ω<sub>F</sub>X is F-fuzzy sober + some condition on X implies that X is F-sober,
- the notions differ,
- ► hence *F*-sobriety also differs from fuzzy sobriety in the sense of A. Pultr and S. Rodabaugh.

### Some questions

- For F<sub>1</sub>, F<sub>2</sub> in a class of topological frames with additional properties, can we find a general description for Spec<sub>F2</sub>(**Top**(X, F<sub>1</sub>))? Or just for F<sub>1</sub> = F<sub>2</sub>?
- ▶ For what conditions on F<sub>1</sub>, F<sub>2</sub> does

 $X \text{ Hausdorff} \Rightarrow X \mathbb{F}_1\text{-sober} \Rightarrow X \mathbb{F}_2\text{-sober} \Rightarrow X \text{ sober}$ 

hold?

What can be said about the forgetful functors Frm<sub>F</sub> → Frm and Frm<sub>F</sub> → Set? Some known facts about exponential objects:

- for X sober: X is exponential in **Top**  $\Leftrightarrow$  X is locally compact,
- ► for X locally compact: the canonical topology on Top(X, Z) is the compact-open topology.

#### Theorem

Let X be a sober exponential topological space,  $\mathbb{F}$  the topological frame  $\mathbb{F} = \mathbf{Top}(Y, \mathbb{S})$  for some sober exponential space Y. Then  $\operatorname{Spec}_{\mathbb{F}}(\mathcal{O}_{\mathbb{F}}(X))$  and  $\operatorname{Top}(Y, X)$  are homeomorphic, where the latter space carries the compact-open topology.

Sketch of proof:

By the exponential law,

```
\mathsf{Top}(X,\mathbb{F}) = \mathsf{Top}(X,\mathsf{Top}(Y,\mathbb{S})) \simeq \mathsf{Top}(X \times Y,\mathbb{S})
```

as spaces.

• Order taken to be pointwise and hence:

$$\mathsf{Top}(X, \mathsf{Top}(Y, \mathbb{S})) \cong \mathsf{Top}(X \times Y, \mathbb{S})$$

as topological frames.

#### Main theorem

It takes a bit of work to show that

 $\mathcal{O}: \mathbf{Top}(Y, X \times Y) \to \mathbf{Frm}(\mathbf{Top}(X \times Y, \mathbb{S}), \mathbf{Top}(Y, \mathbb{S})): f \mapsto \mathcal{O}(f)$ 

with  $\mathcal{O}(f)(h) = hf$  is a bijection.

Again using exponentiality, deduce that

$$\operatorname{\mathsf{Top}}(Y,X imes Y)\simeq\operatorname{\mathsf{Top}}(Y,X) imes\operatorname{\mathsf{Top}}(Y,Y).$$

Show that the bottom line is a homeomorphism and restrict:

### Applications to $(\operatorname{Spec}_{\mathbb{F}}\mathcal{O}_{\mathbb{F}})^n$

#### Lemma

Let X, Y be topological spaces with X finite. Then the compact-open topology on **Top**(X, Y) coincides with the initial topology for the source

$$(ev_x : \mathbf{Top}(Y, X) \to Y)_{x \in X}.$$

#### Proposition

Let L, F be finite distributive lattices endowed with the Scott topology. Then **Top**(L, F) =**Ord**(L, F) and the Scott topology and the initial topology on **Top**(L, F) determined by the source  $(ev_l :$ **Top** $(L, F) \rightarrow F_l)_{l \in L}$ , coincide.

### Application 1: $(\text{Spec}_3\mathcal{O}_3)^n(\mathbb{S})$

#### Definition

A monotone Boolean function of *n* variables is a non-decreasing map  $\{0,1\}^n \rightarrow \{0,1\}$  where  $\{0,1\}^n$  is endowed with the pointwise order. The set of monotone Boolean functions of *n* variables is denoted by  $M_n$ .

• Note that 
$$M_n = \mathbf{Ord}(\mathbb{S}^n, \mathbb{S}) = \mathbf{Top}(\mathbb{S}^n, \mathbb{S}).$$

Since

$$\mathbf{Top}(\mathbf{1},\mathbf{3}) = \mathbf{3} \to \mathsf{Top}(\mathbb{S},\mathbb{S}) : \begin{cases} \mathbf{0} \mapsto (\mathbf{0},\mathbf{0}) \\ \mathbf{1} \mapsto (\mathbf{0},\mathbf{1}) \\ \mathbf{2} \mapsto (\mathbf{1},\mathbf{1}) \end{cases}$$

constitutes an isomorphism of posets and hence of spaces, we obtain that  $\mathbf{3} \cong \mathbf{Top}(\mathbb{S}, \mathbb{S})$  as topological frames.

### Application 1: $(\text{Spec}_3\mathcal{O}_3)^n(\mathbb{S})$

#### Known fact

The lattice of monotone Boolean functions of n variables is isomorphic to the free distributive lattice on n generators.

#### Theorem

 $(\operatorname{Spec}_3\mathcal{O}_3)^n(\mathbb{S})$  and  $M_n$  are homeomorphic and hence isomorphic as lattices.

Sketch of Proof:

- We will give a proof of the homeomorphism claim by induction.
- Applying Theorem our main theorem with X = S,
   𝔽 = 3 = Top(𝔅,𝔅) we can see that this is true for n = 1.
- ► Assume that our claim holds up to some n 1 (n ≥ 2). Applying our main theorem with X = Top(S<sup>n-1</sup>, S) and F = 3 = Top(S, S), and the exponential law we get:

### Application 1: $(\text{Spec}_3\mathcal{O}_3)^n(\mathbb{S})$

$$\begin{aligned} (\operatorname{Spec}_{3}\mathcal{O}_{3})^{n}(\mathbb{S}) &= \operatorname{Spec}_{3}\mathcal{O}_{3}((\operatorname{Spec}_{3}\mathcal{O})^{n-1}(\mathbb{S})) \\ &\simeq \operatorname{Spec}_{3}\mathcal{O}_{3}(\operatorname{Top}(\mathbb{S}^{n-1},\mathbb{S})) \\ &\simeq \operatorname{Top}(\mathbb{S},\operatorname{Top}(\mathbb{S}^{n-1},\mathbb{S})) \\ &\simeq \operatorname{Top}(\mathbb{S}^{n},\mathbb{S}) \simeq M_{n}, \end{aligned}$$

which finishes the proof of this part.

Since all (finite) lattices in the proof are endowed with the Scott topology, the order isomorphism follows.

### Application 2: $(\text{Spec}_{\diamond}\mathcal{O}_{\diamond})^n(\mathbb{S})$

- Denote the antichain on n elements by A<sub>n</sub> and the free Boolean algebra on n elements by B<sub>n</sub>.
- Consider  $\mathbb{F} = \diamond = \mathbb{S} \times \mathbb{S} \cong \mathbf{Top}(A_2, \mathbb{S}).$

#### Lemma

$$\mathbf{Top}(A_{2^{n-1}},\diamond) \cong \mathbf{Ord}(A_{2^{n-1}},\diamond) \cong B_n.$$

Proof:

Since the discrete and the Scott topology on  $A_n$  coincide it follows that  $\mathbf{Ord}(A_{2^{n-1}},\diamond) = \diamond^{2^{n-1}}$ .

### Application 2: $(\text{Spec}_{\diamond}\mathcal{O}_{\diamond})^n(\mathbb{S})$

#### Theorem

 $(\operatorname{Spec}_{\diamond} \mathcal{O}_{\diamond})^n(\mathbb{S})$  and  $B_n$  are homeomorphic and hence isomorphic as lattices.

Sketch of Proof:

- We will give a proof of the homeomorphism claim by induction.
- Applying Theorem our main theorem with X = S,
   𝔽 = ◊ = Top(A<sub>2</sub>, 𝔅) we can see that

$$\mathsf{Spec}_\diamond\mathcal{O}_\diamond(\mathbb{S}) = \mathsf{Top}(A_{2^1}, \mathbb{S}) = \diamond = \mathsf{Top}(A_{2^0}, \diamond),$$

so the claim is true for n = 1.

Assume that our claim holds up to some n − 1 (n ≥ 2). Applying our main theorem with X = Top(A<sub>2<sup>n-2</sup></sub>, ◊) and F = ◊ = Top(A<sub>2</sub>, S), and the exponential law we get:

### Application 2: $(\text{Spec}_{\diamond}\mathcal{O}_{\diamond})^n(\mathbb{S})$

$$\begin{aligned} (\operatorname{Spec}_{\diamond} \mathcal{O}_{\diamond})^{n}(\mathbb{S}) &= \operatorname{Spec}_{\diamond} \mathcal{O}_{\diamond}((\operatorname{Spec}_{\diamond} \mathcal{O}_{\diamond})^{n-1}(\mathbb{S})) \\ &\simeq \operatorname{Spec}_{\diamond} \mathcal{O}_{\diamond}(\operatorname{Top}(A_{2^{n-2}}, \diamond)) \\ &\simeq \operatorname{Top}(A_{2}, \operatorname{Top}(A_{2^{n-2}}, \diamond)) \\ &\simeq \operatorname{Top}(A_{2^{n-1}}, \diamond) \simeq B_{n}, \end{aligned}$$

which finishes the proof of this part.

 Since all (finite) lattices in the proof are endowed with the Scott topology, the order isomorphism follows.

#### References

- J. Adámek, H. Herrlich, G.E. Strecker, Abstract and Concrete Categories. The Joy of Cats, In: Pure and Applied Mathematics, John Wiley and Sons, Inc., New York, 1990.
- G. Birkhoff, Lattice Theory, American Math. Soc. Colloquium Publ, Providence, Rhode Island, 1967.
- E. Colebunders, G. Richter, An Elementary Approach to Exponential Spaces, Applied Categor. Struct. 9 (2001), 303-310.
- B.J. Day, G.M. Kelly, On topological quotient maps preserved by pullbacks or products, Proc. Camb. Phil. Soc. 67, (1970), 553-558.
- R. Fidytek, A.W. Mostowski, R. Somla, A. Szepietowski, Algorithms counting monotone Boolean function, Information Processing Letters 79 (2001), 203-209.
- G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove and D.S. Scott, Continuous lattices and domains, Cambridge University Press, 2003.
- K.H. Hofmann, M.W. Mislove, The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978), 285-310.
- J. Isbell, General function spaces, products and continuous lattices, Math. Proc. Camb. Phil. Soc. 100 (1986), 193-205.
- D. Kleitman, On Dedekind's Problem: The number of montone Boolean functions, Proc. Amer. Math. Soc. 21(3) (1969), 677-682.
- W. Lowen, M. Sioen and W. Van Den Haute. Frames of continuous functions, Top. Appl 273 (2020), 106974.
- W. Lowen, M. Sioen and W. Van Den Haute. Generalized spectra and applications to finite distributive lattices, J. Pure Appl. Alg. (accepted for publication)
- J. Picado, and A. Pultr. Frames and Locales. Topology Without Points, Frontiers in Mathematics, Birkhuser/Springer, Basel AG, Basel, 2012.
- J. Picado, and A. Pultr. Seperation in Pointfree Topology, Birkhuser/Springer, Basel AG, Basel, 2021.



## Happy birthday Jorge!