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Motivation

I Functor O : Top→ Frmop represents spaces as frames.

I Left adjoint Σ : Frmop → Top reconstructs the space:

ΣOX ∼= X whenever X is sober.

I S := ({0, 1}, {∅, {1}, {0, 1}})
I For any space X , OX ∼= Top(X ,S).

I For any frame L,

ΣL = Frm(L, 2) ∼= {a ∈ L | a is meet-irreducible}.



Motivation

I There are many other ways to construct frames induced by
topological spaces, e.g. with P = ([0,∞], TScott)

Top(X ,P)) = {f : (X → P) | f continuous}.

I But the spectrum of Top(X ,P) is X×]0,∞], not X !

I Can we ‘mod out’ ]0,∞]?



Motivation

Question

How much/which topological information about a topological
space X can be captured by the function frame Top(X ,F)
(endowed with pointwise order), and how does this depend on the
nature of F?



Topological frames

Definition

Let F be a frame endowed with a topology TF. We call (F, TF) a
topological frame provided that the operations

∧ : F× F→ F : (a, b) 7→ a ∧ b

and
sup
i∈I

: FI → F : (ai )i∈I 7→ sup
i∈I

ai

are continuous.

E.g. any chain endowed with the Scott topology is a topological
frame.



Topological frames

Definition

Let (F1, T1) and (F2, T2) be topological frames. A map
f : F1 → F2 is called a topological frame morphism if
f : (F1, T1)→ (F2, T2) is continuous and f : F1 → F2 is a frame
homomorphism.

We call TopFrm the category with topological frames as objects
and topological frame morphisms as morphisms.



Topological frames

Proposition

The diagram

TopFrm
UT //

U

##

UF

��

Top

UTop

��
Frm

UFrm // Set

commutes, the functors UTop and UF are topological, UFrm is
monadic and has a left adjoint, UT has a left adjoint and U is
faithful and has a left adjoint.



F-frames and F-spectra

Let X be a topological space and F a topological frame.

I ΓX : F→ Top(X ,F) : a 7→ ca is a frame homomorphism

I Denote FrmF as the comma category F/Frm: F-frames

I OF : Top→ Frmop
F with OF(X ) = ΓX and

OF(ϕ) : Top(Y ,F)→ Top(X ,F) : f 7→ f ϕ

Let L = (L, γL : F→ L) be an F-frame.

I Endow SpecF(L) = FrmF(L,F) with the initial topology for
the source

(evl : FrmF (L,F)→ F : f 7→ f (l))l∈L

I We obtain a functor SpecF : Frmop
F → Top which is left

adjoint to OF .



F-spatial frames and F-sober spaces

Definition
I L is F-spatial if

εL : L→ Top(FrmF(L,F),F) : l 7→ (f 7→ f (l))

is an isomorphism of F-frames.

I X is F-sober if

ηX : X → FrmF(Top(X ,F),F) : x 7→ (f 7→ f (x))

is a homeomorphism.

If F = S, everything reduces to the classical setting.



More on F-sobriety

proposition

X is F-sober if and only if (f : X → F)f ∈Top(X ,F) is initial and
point-separating, and FrmF(Top(X ,F),F) = {evx | x ∈ X}.

proposition

If X is Hausdorff and some conditions on F hold, then X is F-sober.



Some examples

I SpecP(Top(S,P)) ' P

I SpecP(Top(S,n)) ' n

I SpecP(Top(3,P)) ' {(α, β) ∈ P× P | α ≥ β}
I Specn(Top(3,n)) ' {(α, β) ∈ n× n | α ≥ β}
I Spec3(Top(S× S, 3)) ' 3× 3

I . . .



Some conlusions

Conclusion 1

A sober space is generally not F-sober.

Conclusion 2

The space
SpecF(L)

in general fails to be F-sober.

Conclusion 3

The functor
SpecFOF : Top→ Top

in general fails to be idempotent and does not give rise to an
“F-sobrification”.



Relation to F− Top

Consider the following adjunctions (D. Zhang and Y. Liu):

Top
ωF

⊥
//
F-Top

ΩF

⊥
//

ιF
oo Frmop

F
ptF

oo

I ωFX is F-fuzzy sober + some condition on X implies that X
is F-sober,

I the notions differ,

I hence F-sobriety also differs from fuzzy sobriety in the sense
of A. Pultr and S. Rodabaugh.



Some questions

I For F1,F2 in a class of topological frames with additional
properties, can we find a general description for
SpecF2

(Top(X ,F1))? Or just for F1 = F2?

I For what conditions on F1,F2 does

X Hausdorff⇒ X F1-sober⇒ X F2-sober⇒ X sober

hold?

I What can be said about the forgetful functors FrmF → Frm
and FrmF → Set?



Main theorem for today

Some known facts about exponential objects:

I for X sober: X is exponential in Top⇔ X is locally compact,

I for X locally compact: the canonical topology on Top(X ,Z )
is the compact-open topology.

Theorem

Let X be a sober exponential topological space, F the topological
frame F = Top(Y ,S) for some sober exponential space Y . Then
SpecF(OF(X )) and Top(Y ,X ) are homeomorphic, where the latter
space carries the compact-open topology.



Main theorem

Sketch of proof:

I By the exponential law,

Top(X ,F) = Top(X ,Top(Y ,S)) ' Top(X × Y ,S)

as spaces.

I Order taken to be pointwise and hence:

Top(X ,Top(Y ,S)) ∼= Top(X × Y ,S)

as topological frames.



Main theorem

I It takes a bit of work to show that

O : Top(Y ,X×Y )→ Frm(Top(X×Y ,S),Top(Y ,S)) : f 7→ O(f )

with O(f )(h) = hf is a bijection.

I Again using exponentiality, deduce that

Top(Y ,X × Y ) ' Top(Y ,X )× Top(Y ,Y ).

I Show that the bottom line is a homeomorphism and restrict:

Top(Y ,X ) oo //
� _

��

SpecF(OF(X ))� _

��
Top(Y ,X )× Top(Y ,Y ) oo // Frm(Top(X ,F),F)



Applications to (SpecFOF)n

Lemma

Let X ,Y be topological spaces with X finite. Then the
compact-open topology on Top(X ,Y ) coincides with the initial
topology for the source

(evx : Top(Y ,X )→ Y )x∈X .

Proposition

Let L,F be finite distributive lattices endowed with the Scott
topology. Then Top(L,F ) = Ord(L,F ) and the Scott topology
and the initial topology on Top(L,F ) determined by the source
(evl : Top(L,F )→ Fl)l∈L, coincide.



Application 1: (Spec3O3)n(S)

Definition

A monotone Boolean function of n variables is a non-decreasing
map {0, 1}n → {0, 1} where {0, 1}n is endowed with the pointwise
order. The set of monotone Boolean functions of n variables is
denoted by Mn.

I Note that Mn = Ord(Sn,S) = Top(Sn,S).

I Since

Top(1, 3) = 3→ Top(S,S) :


0 7→ (0, 0)

1 7→ (0, 1)

2 7→ (1, 1)

constitutes an isomorphism of posets and hence of spaces, we
obtain that 3 ∼= Top(S,S) as topological frames.



Application 1: (Spec3O3)n(S)

Known fact

The lattice of monotone Boolean functions of n variables is
isomorphic to the free distributive lattice on n generators.

Theorem

(Spec3O3)n(S) and Mn are homeomorphic and hence isomorphic
as lattices.



Application 1: (Spec3O3)n(S)

Sketch of Proof:

I We will give a proof of the homeomorphism claim by
induction.

I Applying Theorem our main theorem with X = S,
F = 3 = Top(S,S) we can see that this is true for n = 1.

I Assume that our claim holds up to some n − 1 (n ≥ 2).
Applying our main theorem with X = Top(Sn−1,S) and
F = 3 = Top(S,S), and the exponential law we get:



Application 1: (Spec3O3)n(S)

(Spec3O3)n(S) = Spec3O3((Spec3O)n−1(S)

' Spec3O3(Top(Sn−1,S))

' Top(S,Top(Sn−1,S))

' Top(Sn,S) ' Mn,

which finishes the proof of this part.

I Since all (finite) lattices in the proof are endowed with the
Scott topology, the order isomorphism follows.



Application 2: (Spec�O�)n(S)

I Denote the antichain on n elements by An and the free
Boolean algebra on n elements by Bn.

I Consider F = � = S× S ∼= Top(A2,S).

Lemma

Top(A2n−1 , �) ∼= Ord(A2n−1 , �) ∼= Bn.

Proof:
Since the discrete and the Scott topology on An coincide it follows
that Ord(A2n−1 , �) = �2n−1

.



Application 2: (Spec�O�)n(S)

Theorem

(Spec�O�)n(S) and Bn are homeomorphic and hence isomorphic as
lattices.

Sketch of Proof:

I We will give a proof of the homeomorphism claim by
induction.

I Applying Theorem our main theorem with X = S,
F = � = Top(A2,S) we can see that

Spec�O�(S) = Top(A21 ,S) = � = Top(A20 , �),

so the claim is true for n = 1.

I Assume that our claim holds up to some n − 1 (n ≥ 2).
Applying our main theorem with X = Top(A2n−2 , �) and
F = � = Top(A2,S), and the exponential law we get:



Application 2: (Spec�O�)n(S)

(Spec�O�)n(S) = Spec�O�((Spec�O�)n−1(S))

' Spec�O�(Top(A2n−2 , �))

' Top(A2,Top(A2n−2 , �))

' Top(A2n−1 , �) ' Bn,

which finishes the proof of this part.

I Since all (finite) lattices in the proof are endowed with the
Scott topology, the order isomorphism follows.
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Happy birthday Jorge!


