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To interpret frames and frame homomorphisms

geometrically, that is, to have an extension of

classical topology, on has to view the homo-

morphisms backwards, that is, to pass

from Frm to Loc = Frmop,

to the category of locales.

One can work simply abstractly with the dual

category, but it is of advantage to work with

Loc as with a concrete category. Frame ho-

momorphisms

h : L → M

can be uniquely represented by their right

Galois adjoints

h∗ : M → L

and we speak of such maps as of localic maps.



Thus, what are the localic maps?

Being right adjoints, they preserve all meets.

But not every map preserving all meets is

adjoint to a frame homomorphism. Those that

are are characterized by the conditions that

f(x) = 1 only for x = 1,

and

f(f∗(a)→b) = a→f(b)

the Frobenius identity (→ is the Heyting ar-

row). Using thus defined maps turned out to

be technically very useful, easier to work with

then one would assume.

But do they make sense geometrically?

YES, they are more topological than one

might expect.



Similarly as other categories, Loc has a natu-
ral concept of subobjects, namely the extremal
monos (the extremal epis of Frm). As con-
crete subobjects they appear as the

sublocales S of L,

the subsets S ⊆ L such that

• for every M ⊆ S one has
∧
M ∈ S, and

• if s ∈ S and x ∈ L is arbitrary then x→s ∈ S.

Thus defined concept of a sublocale naturally
and aptly extends that of a subspace, and the
system of all sublocales of L is a coframe

S(L)

(Recall the co-Heyting (Boolean) algebra of
all subspaces with the operation of difference
A ∖B.)



Closed and open sublocales.

In particular we have the closed sublocales

c(a) =↑a
and open sublocales

o(a) = {a→x | x ∈ L}
precisely corresponding to closed and open sub-
spaces in the spatial case, and in general be-
having precisely as closed and open subobjects
should:

• c(a) and o(a) are complements of each other,

• meets of arbitrary many and joins of finitely
many closeds are closed, and

• joins of arbitrary many and meets of finitely
many opens are open,

etc.



Images and preimages under localic maps

For a localic f : L → M , a sublocale S ⊆ L and

a sublocale T ⊆ M we have the

image f [S] ⊆ M and preimage f−1[T ] ⊆ L,

f [S] being the standard set-theoretic image,

and f−1[T ] the largest sublocale contained in

the standard f−1[T ]. They are adjoint to each

other, that is,

f [A] ⊆ B iff A ⊆ f−1[B],

Facts: 1. f−1[−] is a coframe homomorphism

S(M) → S(L).

2. For closed A one has

f−1[A] = f−1[A]

but generally one has only f−1[A] ⊆ f−1[A].



Perhaps not very surprisingly

Preimages of closed sublocales are closed
sublocales and

but perhaps more surprisingly this can be in-
verted: roughly

If L, M are locales then a mapping
f : L → M preserves closedness and open-
ness by preimage then it is a localic map.

Why “roughly”: standard set theoretic preim-
ages f−1[−] are for open sublocales not always
the same as f−1[−], hence we have to formu-
late it more correctly (Sc is the complement of
S)

A map f : L → M between locales is localic iff

- for every closed A ∈ S(M), f−1[A] is
closed, and

- for every open A ∈ S(M), f−1[A] ⊇ (f−1[Ac])c.



Note that

• thus the localic maps are very much like

continuous maps,

• but we have to think of the preimages of

closed and open sublocales separately: We

characterize localic maps among the

general ones for which we can apply f−1[−]

only, not the f−1[−] which would take care

for complements.

We will now discuss some aspects of the frame

(locale) S(L)op in view of the just presented

facts.

Mainly we wish to explain what makes S(L)

sometimes the more or less satisfactory surro-

gate for the classical discrete lifting of a space.



Discontinuous maps on a space X are studied

as maps on D(X), the discretization of X (the

carrier provided with the discrete topology).

In the study of discontinuity on a locale L one

considers for a discretization the S(L) which is

not really discrete, but being zero-dimensional

(in a very strong way) it is indeed “dispersed

enough” to help. But it may seem a somehow

ad hoc technical way out. We will show that

it really has to do with discreteness.

To this aim we will have to analyze the concept

of dissolution.



Dissolutions were introduced by Isbell in the

famous “Atomless parts of space” (Theorem

1.3), though not under this name. We fol-

low the terminology of the excellent paper of

Plewe where the author applies it to advan-

tage. In Plewe’s words, the dissolution of L

is a (unique) locale La whose lattice of closed

sets Cℓ(La) is isomorphic to the lattice S(L) of

all sublocales. hence we have here an isomor-

phism

S(L) ∼= Cℓ(La)

resulting in an embedding

S(L) ∼= Cℓ(La) ⊆ S(La)

or, rather, an embedding

j : S(L) → S(La)

such that j[S(L)] consists precisely of the closed

sublocales of S(La).



In that the authors use any construction of

subobjects then available (onto maps, nuclei,

congruences) and Isbell’s construction is based

on a general inverse-image (preimage) proce-

dure working in any complete category.

In fact the situation is much simpler and more

transparent. From now on sublocales are the

subsets mentioned above, and the same with

images and preimages. To avoid repeated ex-

planation of when we speak of frames and

when on coframes we will write

T(L) for S(L)op.

and remember the standard embedding

cL = (a →↑a) : L → T(L).



We can continue in constructing assembly (tower)

L
cL //T(L)

cT(L)
//T(T(L)) // · · ·

cL is a frame homomorphism, hence a left ad-

joint to a localic map γL

L
cL

--⊥ T(L)
γL

ll

and this γL has a very simple formula

γL(S) =
∧

S.

and we have the tower in more detail as

L
cL ,,

T(L)
γL

jj

cL ..
T(T(L))

γL
ll

// · · ·

Now let us concentrate to two things. First

we have the image-preimage adjunction for the

(very simple) localic map γL

T(L)

(γL)−1[−]
))

⊥ T(T(L))

γL[−]

ii
.



But we have already seen another adjunction

pair between the T(L) and TT(L), namely the

second step

T(L)

cT(L)
))

⊥ T(T(L))

γT(L)

ii

of the assembly above. And it needs only a few

lines of easy computing to show that they co-

incide. The embedding cT(L) of course embeds

T(L) precisely on the Cℓ(T(L)) and hence so

does the (γL)−1[−].

Thus, the dissolution is nothing else but

La = T(L) = S(L)op



Let us now compare the classical discrete lift-

ing in Top, δ : D(X) → X, with the localic

map γ : T(L) → L in Loc.

For the δ we have that

is is one-to-one onto, and δ−1[A] is closed

for each subset A ⊆ X

For the γ : T(L) → L we have that

it is monic and epic, and γ−1[A] is closed

for each sublocale A ⊆ L.

It does look very much the same !

But there is, of course, a difference.



In the former, the condition on closed sets im-

plies the same for open sets.

In the latter, the open sets are not attended to.

THUS: using the S(L) is a sort of discretiza-

tion,

BUT it goes only

a half way to a full discretization.

It has to be noted that for some purposes it

may be the best what we can have.



In the following diagram, SC(L) is Boolean and

hence “point-free discrete”.

B is the Booleanization, and B the maximal

essential extension.

The dashed arrows indicate that those make

sense in the subfit case only.

T(L) = S(L)op S 7→S∗∗
//B(S(L)op)

L

(a7→↑a)

::

(a7→↑a)
//

o

$$

SC(L)op

⊆

OO

S 7→S∗

��

j
//Bop

∼=

xx

∼=

OO

SC(L)


