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The system of all subspaces: pointfree setting

We start by recalling an important fact about the system of all sublocales of a locale.

Theorem

For a frame L, the ordered collection S(L)op is a frame.

This suggests that the sublocales of a frame may be interpreted as closed sets of some
topology.
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The system of all subspaces: pointfree setting

We have a canonical embedding ∇ : L ↪→ S(L)op.

Theorem (Joyal and Tierney, 1984)

For a frame L, the embedding ∇ : L ↪→ S(L)op is such that for every frame map f : L → M
such that every f (x) has a complement there is f̃ : S(L)op → M making the following diagram
commute.

S(L)op

L M

f̃∇

f

This is what we mean when we say that S(L)op provides complements freely to the elements of
L.
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The system of all subspaces: point-set setting

We may ask ourselves what is the point-set counterpart of the frame of sublocales.

• For a space X , do its subspaces form an interesting topology?

We seem to encounter a problem. For a space X , the ordered collection of its subspaces is just
P(X ). This is indeed a topology on X , but not a particularly interesting one at all. But
pointfree topology is about sober spaces. What happens if we restrict ourselves to these?

Proposition

For a sober space X , its sober subspaces are closed under arbitrary intersections and finite
unions. They are the closed sets of some topology.

For a topological space X , the Skula topology on its points is the one generated by the opens
of X together with their complements.

Theorem (Keimel and Lawson, 2009)

The sober subspaces of a sober space are the closed sets of the Skula topology.

5 / 21



The system of all subspaces: point-set setting

We may ask ourselves what is the point-set counterpart of the frame of sublocales.

• For a space X , do its subspaces form an interesting topology?

We seem to encounter a problem. For a space X , the ordered collection of its subspaces is just
P(X ). This is indeed a topology on X , but not a particularly interesting one at all.

But
pointfree topology is about sober spaces. What happens if we restrict ourselves to these?

Proposition

For a sober space X , its sober subspaces are closed under arbitrary intersections and finite
unions. They are the closed sets of some topology.

For a topological space X , the Skula topology on its points is the one generated by the opens
of X together with their complements.

Theorem (Keimel and Lawson, 2009)

The sober subspaces of a sober space are the closed sets of the Skula topology.

5 / 21



The system of all subspaces: point-set setting

We may ask ourselves what is the point-set counterpart of the frame of sublocales.

• For a space X , do its subspaces form an interesting topology?

We seem to encounter a problem. For a space X , the ordered collection of its subspaces is just
P(X ). This is indeed a topology on X , but not a particularly interesting one at all. But
pointfree topology is about sober spaces. What happens if we restrict ourselves to these?

Proposition

For a sober space X , its sober subspaces are closed under arbitrary intersections and finite
unions.

They are the closed sets of some topology.

For a topological space X , the Skula topology on its points is the one generated by the opens
of X together with their complements.

Theorem (Keimel and Lawson, 2009)

The sober subspaces of a sober space are the closed sets of the Skula topology.

5 / 21



The system of all subspaces: point-set setting

We may ask ourselves what is the point-set counterpart of the frame of sublocales.

• For a space X , do its subspaces form an interesting topology?

We seem to encounter a problem. For a space X , the ordered collection of its subspaces is just
P(X ). This is indeed a topology on X , but not a particularly interesting one at all. But
pointfree topology is about sober spaces. What happens if we restrict ourselves to these?

Proposition

For a sober space X , its sober subspaces are closed under arbitrary intersections and finite
unions. They are the closed sets of some topology.

For a topological space X , the Skula topology on its points is the one generated by the opens
of X together with their complements.

Theorem (Keimel and Lawson, 2009)

The sober subspaces of a sober space are the closed sets of the Skula topology.

5 / 21



The system of all subspaces: point-set setting

We may ask ourselves what is the point-set counterpart of the frame of sublocales.

• For a space X , do its subspaces form an interesting topology?

We seem to encounter a problem. For a space X , the ordered collection of its subspaces is just
P(X ). This is indeed a topology on X , but not a particularly interesting one at all. But
pointfree topology is about sober spaces. What happens if we restrict ourselves to these?

Proposition

For a sober space X , its sober subspaces are closed under arbitrary intersections and finite
unions. They are the closed sets of some topology.

For a topological space X , the Skula topology on its points is the one generated by the opens
of X together with their complements.

Theorem (Keimel and Lawson, 2009)

The sober subspaces of a sober space are the closed sets of the Skula topology.

5 / 21



The system of all subspaces: comparing the two settings

The frame of sublocales of a frame is then a pointfree analogue of the Skula topology of a
space. In what precise sense is it its analogue? The following result is well-known, see for
instance Picado and Pultr’s book [4].

Theorem

For a frame L, we have that pt(S(L)op) is – up to homeomorphism – the Skula space of pt(L).

In particular, the assignments L 7→ S(L)op and X 7→ Sk(X ) are functorial and the following
commutes up to natural isomorphism.

Frmop Frmop

Top Top

Sop

pt pt

Sk
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The system of all subspaces: comparing the two settings

Let us review the importance of the pointfree and point-set versions of the system of all
subspaces.

For a frame L...
• The system of all its sublocales is the
opposite of a frame.

• This is S(L)op, the frame of sublocales.

• It provides complements freely to all
elements of the original frame.

For a sober space X ...

• The system of all its sober subspaces are
the closed sets of some topology.

• This is called the Skula topology on X .

• It is generated by adding the closed sets
to the original topology.

We call the facts on the left UP (for universal property) and those on the right Sob (for
sobriety). We will now seek for a good bitopological version of both UP and Sob.
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Bitopological spaces

A bitopological space is a triple (X , τ+, τ−) in which X is a set and τ+ and τ− are two
topologies on it.

The category BiTop has as objects bitopological spaces, and as morphisms
maps between their underlying sets which are bicontinuous, i.e. continuous with respect to
both topologies. The patch topology of (X , τ+, τ−) is the topology < τ+ ∪ τ− > on X
generated by τ+ ∪ τ−. The elements of < τ+ ∪ τ− > which are got by finitary lattice
operations from elements of τ+ ∪ τ− are called finitary.

Bitopological spaces arise naturally when dealing with quasi-uniform spaces. They also provide
a good setting in which to speak about Stone-type dualities (see Jung and Moshier 2006 [3],
Bezhanishvili et al. 2010 [2]).
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Biframes and d-frames

There are two pointfree analogues of bitopological spaces. We have biframes, studied in
Banaschewski (see [1]). More recently, d-frames have been introduced by Jung and Moshier in
2006 (see [3]). Let us quickly look at their dualities.

A biframe is a triple (L+, L−, L) such that all three elements are frames and L+, L− ⊆ L
generate the frame L in the subbase sense. We note that L may be seen as a quotient of the
coproduct L+ ⊕ L−. Morphisms f : L → M between biframes are frame morphisms f : L → M
such that f [L±] ⊆ M±.

Theorem (Banaschewski, 1983)

We have an adjunction bΩ : biTop ⇆ biFrmop : bpt with bΩ ⊣ bpt. The functor bΩ assigns
to each bitopological space X the triple (τ+, τ−, < τ+ ∪ τ− >)

We observe that this functor keeps all the information on the patch topology.
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Biframes and d-frames

A d-frame is a quadruple (L+, L−, con, tot), where L+ and L− are frames and
con, tot ⊆ L+ × L−.

Intuitively, con and tot represent disjoint and covering pairs, respectively.

Theorem (Jung and Moshier, 2006)

We have an adjunction dΩ : biTop ⇆ dFrmop : dpt with dΩ ⊣ dpt.

Intuitively, the functor dΩ only keeps the information on which pairs of τ+ × τ− are disjoint
and which are covering.
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Finitary biframes

Finitary biframes are studied in [6]. We say that an element of L+ ⊕ L− is finitary when it is
obtained from elements in L+ ∪ L− by finitary lattice operations.

A biframe L is finitary when
L is obtained by quotienting the coproduct L+ ⊕ L− by a relation involving only finitary
elements. The category biFrmfin is a full coreflective subcategory of the category of biframes.
The coreflector c takes a biframe L to the finitary biframe (L+, L−, Lfin), where Lfin is the
coproduct L+ ⊕ L− quotiented only by the finitary order relations in L.

Theorem

We have an adjunction c ◦ bΩ : biTop ⇆ biFrmfin
op : bpt with c ◦ bΩ ⊣ bpt.

Intuitively, c ◦ bΩ is only keeping the information on the order relations between the finitary
elements of < τ+ ∪ τ− >.
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Finitary biframes

The adjunction c ◦ bΩ : biTop ⇆ biFrmfin
op : bpt is a middle ground between the biframe and

the d-frame adjunctions. The “open set” functor of this adjunction forgets more information
than the biframe one, but less than the d-frame one.

BiTop BiFrmop BiFrmfin
op dFrmop

bΩ c

bpt

⊣ ∆⊣ ⊣

Γ

⊣
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Biframes and d-frames

The dualities of biframes and d-frames give raise to different bitopological versions of sobriety.
It turns out that the fixpoints of the biframe adjunction are simply the patch-sober ones. We
call d-sober bispaces the fixpoints of the d-frame adjunction. Both these notions present some
issues.

Some issues with sobriety so far

• The notion of sobriety for biframes collapses to monotopological sobriety (of the patch).

• D-sober subspaces are in general not closed under finite unions. They cannot be the
closed sets of any topology.

This means that we cannot hope to have a satisfactory bitopological version of Sob in these
two settings.
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The system of all bisubspaces: point-set setting

We say that a bispace is bisober when it is a fixpoint for the finitary biframes adjunction.

For
a bitopological space X , the Skula bitopology on its points is the one

• whose positive opens are the topology generated by τ+ together with the complements of
the opens in τ−;

• whose negative opens are the topology generated by τ− together with the complements
of the opens in τ+.

Theorem (Suarez, 2022)

The bisober bisubspaces of a bisober bispace are the patch-closed sets of the Skula bitopology.

We have then found a bitopological version of Sob in the setting of finitary biframes.
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The congruence biframe

For a biframe L and a+ ∈ L+, an element a− ∈ L− is its bicomplement if it is a complement
in L. Bicomplements for elements in L− are defined similarly.

In [5] the following is proven.

Theorem (Schauerte 1992)

For every biframe L there is a biframe C(L) together with a biframe embedding ∇ : L → C(L)
such that whenever f : L → M is a biframe map providing bicomplements to all elements of
L+ and L−, there is f̃ : C(L) → M such that the following commutes.

C(L)

L M

f̃∇

f

This is what we mean when we say that C(L) provides bicomplements freely to the elements
of L.
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The system of all bisubspaces: pointfree setting

Schauerte’s construction has the universal property which is the exact bitopological analogue
of that of S(L)op.

In dFrm, too, we may construct a d-frame enjoying an analogue of this
property.

Some issues with UP so far
• The structure C(L) does not represent the bisublocales of L. Furthermore, the biframe
version of bisublocale collapses to the monotopological notion for its patch (just like with
sobriety).

• For d-frames, the lattice of all bisublocales is not distributive in general. It cannot
possibly be represented by a d-frame.

This means that we cannot find a satisfactory bitopological version of UP in the settings of
biframes or d-frames.
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The system of all bisubspaces: comparing the two settings

In [6] the following is proven.

Lemma (Suarez, 2022)

For a finitary biframe L the biframe C(L) is finitary, and it provides bicomplements freely to L
in the category biFrmfin.

Furthermore, the main component of the biframe C(L) is
anti-isomorphic to the ordered collection of the its finitary bisublocales.

We have then found a bitopological version of UP in the setting of finitary biframes.
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The system of all bisubspaces: comparing the two settings

From Schauerte’s result and the definition of Skula bispace, it is easy to prove the following.

Theorem

For a finitary biframe L, we have that bpt(C(L)) is – up to bihomeomorphism – the Skula
bispace of bpt(L).

In particular, the assignments L 7→ C(L) and X 7→ biSk(X ) are functorial
and the following commutes up to natural isomorphism.

biFrmfin
op BiFrmfin

op

biTop biTop

C

bpt bpt

biSk
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The system of all bisubspaces: comparing the two settings

We have obtained bitopological versions of UP and Sob.

For a finitary biframe L...
• The system of all its bisublocales
forms a biframe.

• This is C(L), Schauerte’s congruence
biframe.

• It provides bicomplements freely to all
elements of L+ ∪ L−.

For a bisober bispace X ...

• The system of all its bisober
bisubspaces are the closed sets of
some bispace.

• This is called the Skula bitopology on
X .

• It is generated by adding the closed
sets of one topology to the opens of
the other.
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