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Uniform spaces

A uniform space is a set X equipped with a filter E of binary relations

on X satisfying, for all E ∈ E :

1. ∆X ⊆ E ,

2. E o ∈ E ,
3. ∃F ∈ E . F ◦F ⊆ E .

The elements of E are called entourages and should be thought of as

approximate equality relations.

A map f : X → Y between uniform spaces (X , E) and (Y ,F) is

uniformly continuous if (f × f )−1(F ) ∈ E for every F ∈ F .
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Uniform locales

A pre-uniform locale is then a locale X equipped with a filter E on

O(X × X ) satisfying the same axioms as before.

The uniformity on a pre-uniform locale might induce a ‘coarser

topology’ than that given by the underlying locale.

Define v ◁E u (for u, v ∈ OX , E ∈ E) to mean E ◦ (v ⊕ v) ≤ u ⊕ u

and v ◁E u to mean v ◁E u for some E ∈ E .

A pre-uniform locale (X , E) is a uniform locale if u =
∨

v◁Eu v for all u.

A locale map f : X → Y between pre-uniform locales (X , E) and (Y ,F)

is said to be uniform if (f × f )∗(F ) ∈ E for all F ∈ F .

A uniform embedding is a sublocale embedding f : X ↪→ Y such that

(f × f )∗(F ) ∈ E if and only if F ∈ F .
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Completeness

A uniform locale X is complete if every uniform embedding X ↪→ Y is

closed.

Every uniform locale has a unique completion: a complete uniform

locale into which it uniformly embeds as a dense sublocale.

The completion of a uniform space/locale is usually constructed in

terms of (regular) Cauchy filters.

A regular Cauchy filter on a uniform locale (X , E) is a filter F on OX

such that

• F is nontrivial in the sense that u ∈ F =⇒ u > 0,

• for each E ∈ E , there is some u ∈ F with u ⊕ u ≤ E ,

• if u ∈ F then there is a v ∈ F such that v ◁E u.
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The locale of regular Cauchy filters

We construct the classifying locale CX of regular Cauchy filters on X .

We define a presentation with a generator [u ∈ F ] for each u ∈ OX and

the following relations:

• [1 ∈ F ] = 1

• [u ∧ v ∈ F ] = [u ∈ F ] ∧ [v ∈ F ]

• [u ∈ F ] ≤ !∗Ju > 0K
•
∨

u⊕u≤E [u ∈ F ] = 1 for all E ∈ E
• [u ∈ F ] ≤

∨
v◁Eu[v ∈ F ]

Observe that the points of the resulting frame are precisely the regular

Cauchy filters as we defined before.

There is an obvious locale embedding γ : X ↪→ CX obtained by sending

[u ∈ F ] ∈ OCX to u ∈ OX . This is the completion of X .
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Completion of metric spaces

Metric spaces have uniform structures and the uniform completion

agrees with the metric completion.

Metric spaces are usually instead completed using Cauchy sequences.

However, this does not work for uniform spaces. But it will in the

pointfree setting!

Vickers showed that the underlying locale of the completion of a metric

space can be obtained as a (tri)quotient of the locale of rapidly

converging Cauchy sequences.1

We will use a similar approach (though there is no good way to define

rapid convergence without a metric).

1S. Vickers, “Localic completion of quasimetric spaces”, Tech. Report DoC 97/2,

Department of Computing, Imperial College London, 1997.
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Modulated Cauchy sequences

A Cauchy sequence in a uniform space (X , E) is a map s : N → X such

that ∀E ∈ B. ∃N ∈ N. ∀n, n′ ≥ N. (s(n), s(n′)) ∈ E where B is some

chosen base for the uniformity E .

There is no apparent way to define a classifying locale for such logically

complex objects. Instead we ‘Skolemise’ the definition to give

∃m : B → N. ∀E ∈ B. ∀n, n′ ≥ m(E ). (s(n), s(n′)) ∈ E .

(Actually, Skolemisation needs the axiom of choice, so we use left-total

relations m : B +→ N instead of functions.)

Such an m is called a modulus of Cauchyness. A sequence equipped

with a modulus is called a modulated Cauchy sequence.

We can now define a locale of modulated Cauchy sequences.
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The locale of modulated Cauchy sequences

Let X = (X , E) be a uniform locale with base B ⊆ E . We give a

presentation for the frame of ModCauchy(X ).

The generators are:

• [s(n) ∈ u] for each n ∈ N and u ∈ OX ,

• [m(E ) = k] for E ∈ B and k ∈ N.

The relations are:

•
∨

α

∧
u∈Fα

[s(n) ∈ u] = [s(n) ∈
∨

α

∧
Fα] for each family (Fα)α of

finite subsets of OX ,

• 1 ≤
∨

k∈N[m(E ) = k] for each E ∈ B,
• [m(E ) = k] ≤

∨
u⊕u′≤E [s(n) ∈ u] ∧ [s(n′) ∈ u′] for E ∈ B, k ∈ N

and n, n′ ≥ k.
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The limit map

We will now argue that the completion of X is a well-behaved quotient

of ModCauchy(X ).

The quotient map q : ModCauchy(X ) → CX is intended to ‘take the

limit’ of the Cauchy sequences and is given by

q∗([u ∈ F ]) =
∨
E∈B

∨
v◁Eu′◁Eu

∨
k≤k ′∈N

[m(E ) = k] ∧ [s(k ′) ∈ v ].

Intuitively, this says q((m, s)) lies in u iff s(k ′) ∈ v for some k ′ ∈ N and

v ◁E u′ ◁E u such that m(E ) = k and k ≤ k ′.
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The triquotient assignment

To show this is a ‘good’ quotient, we will define a join-preserving map

g : OModCauchy(X ) → OCX such that gq∗ = idOC and for all a, b

we have g(a ∧ q∗(b)) = g(a) ∧ b.

You can think of g as giving a map g sending points p of the completion

to collections of modulated Cauchy sequences that converge to p.

I won’t give the definition g here, but the intuition is that g(p) is the

collection of modulated Cauchy sequences (m, s) that converge to p

‘twice as fast’ as the modulus.
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Taking stock

Note that we can now throw away our old construction of CX and

recover it from the fixed points of the composite endofunction q∗g on

OModCauchy(X ).

Or we can use q∗g to define the internal

equivalence relation on ModCauchy(X ) that has CX as its quotient.

Thus, we can construct the completion purely via Cauchy sequences.

How do we make sense of this, given that this is supposed to be

impossible for uniform spaces?

Well, the spatial approach would involve restricting to the points of

ModCauchy(X ) before we take the quotient. And the spatial

coreflection does not commute with the quotient.

Moreover, note that ModCauchy(X ) can be highly non-spatial when B
is uncountable. Intuition: NB is non-spatial for uncountable B.
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