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The spatial-sober duality Skip

Frames

A frame is a complete lattice L satisfying

a ∧
∨
i∈I

bi =
∨

(a ∧ bi ).

Frame homomorphisms preserve

finite meets and arbitrary joins.

Topological spaces

and continuous functions.
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The spatial-sober duality

I Ω : Top→ Frmop

Ω(X ) := ({open subsets of X},⊆) Ω(X
f−→ Y ) := (Ω(Y )

f −1

−−→ Ω(X ))

I Σ : Frmop → Top

Σ(L) := {c. p. filters of L}

â := {F | a ∈ F}, a ∈ L

Σ(L
h−→ M) := (Σ(M)

h−1

−−→ Σ(L))

We have an adjunction Ω : Top� Frmop : Σ which restricts and

co-restricts to a duality between sober spaces and spatial frames.

− Spatial frame: a frame of the form Ω(X ) for some topological space X .

− Sober space: a space that is completely determined by its set of open subsets.
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Bounded distributive lattices seen as coherent frames

A coherent frame is a frame L whose set of compact elements K (L) is

closed under finite meets (thus, a sublattice) and join-dense in L.

Coherent homomorphisms are frame homomorphisms that preserve

compact elements.

I If D is a bounded distributive lattice, (Idl(D),⊆) is a coherent frame.

If h : C → D is a lattice homomorphism, Idl(h) : (J ∈ Idl(C )) 7→ 〈h[J]〉Idl
is a coherent homomorphism.

I If L is a coherent frame, K (L) is a bounded distributive lattice.

If h : L→ M is a coherent homomorphism, the restriction and

co-restriction K (h) : K (L)→ K (M) of h is a lattice homomorphism.

These assignments define an equivalence of categories DLat ∼= CohFrm
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Spectral spaces

A spectral space is a T0 compact sober space (X , τ) whose set of

compact open subsets is closed under finite meets and is a

basis for the topology.

Spectral maps are continuous functions such that the preimage of

compact open subsets is again compact (and open).

The adjunction Ω : Top� Frmop : Σ restricts and co-restricts to an

equivalence

Spec ∼= CohFrmop
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Stone duality for bounded distributive lattices
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Pervin spaces

What are the quasi-uniformizable topological spaces?

Every topology comes from a quasi-uniformity!

Every topology comes from a transitive and totally bounded quasi-uniformity.
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Pervin spaces

A Pervin space is a pair (X ,S), where X is a set and S ⊆ P(X ) is a

bounded sublattice.

A morphism of Pervin spaces f : (X ,S)→ (Y , T ) is a map f : X → Y

such that for every T ∈ T , we have f −1(T ) ∈ S.

There is a full embedding Top ↪→ Pervin, (X , τ) 7→ (X , τ).

Theorem (Pin, 2017)

The category Pervin of Pervin spaces is equivalent to the category of

transitive and totally bounded quasi-uniform spaces.
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Frith frames

A Frith frame is a pair (L, S), where L is a frame and S ⊆ L is a

join-dense bounded sublattice.

A morphism of Frith frames h : (L,S)→ (M,T ) is a frame

homomorphism h : L→ S such that h[S ] ⊆ T .

There is a full embedding Frm ↪→ Frith, L 7→ (L, L).

Theorem (B., Suarez)

The category Frith of Frith frames is a coreflective subcategory of the

category of transitive and totally bounded quasi-uniform frames.
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The Frith-Pervin adjunction

I Ω : Pervin→ Frithop

Ω(X ,S) := (〈S〉Frm, S)

Ω((X ,S)
f−→ (Y , T )) := (Ω(Y , T )

f −1

−−→ Ω(X ,S))

I Σ : Frithop → Pervin

Σ(L,S) := (Σ(L), {ŝ | s ∈ S}) (ŝ := {F | s ∈ F})

Σ((L,S)
h−→ (M,T )) := (Σ(M,T )

h−1

−−→ Σ(L,S))

Pervin Frithop

Top Frmop

Ω
>
Σ

Ω
>
Σ
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Stone duality for bounded distributive lattices
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Completion of Pervin spaces

Theorem (Gehrke, Grigorieff, Pin, 2010; Pin, 2017)

The categories of spectral spaces and of complete T0 Pervin spaces are

isomorphic.
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Symmetric Frith frames

A Frith frame (L,S) is symmetric if S is a Boolean algebra.

Proposition (B., Suarez)

Symmetric Frith frames form a full reflective subcategory of Frith.

That is, for every Frith frame (L,S), there exists a symmetric Frith frame

Sym(L,S) = (CSL, 〈S〉BA),

called the symmetrization of (L,S), such that for every h : (L,S)→ (M,B) with

(M,B) symmetric there is a unique h making the following diagram commute:

(L,S) Sym(L,S)

(M,B)

hh
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Completion of Frith frames

I A symmetric Frith frame (L,B) is complete if every dense surjection1

(M,C )� (L,B) with (M,C ) symmetric is an isomorphism.

I A Frith frame (L,S) is complete provided Sym(L,S) is complete.

Theorem (B., Suarez)

A Frith frame (L,S) is complete if and only if L = Idl(S).

Corollary

The categories of coherent frames and of complete Frith frames are

isomorphic.

1h : (M,C)� (L,B) is a dense surjection if (h(a) = 0 =⇒ a = 0) and h[C ] = B.
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Stone duality for bounded distributive lattices
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The bitopological point of view



Bitopological spaces and biframes

A bitopological space is a triple (X , τ1, τ2), where τi is a topology on X .

A biframe is a triple (L, L1, L2) of frames st Li ≤ L and L = 〈L1 ∪L2〉Frm.

I Ωb : biTop→ biFrmop

Ωb(X , τ1, τ2) := (τ1 ∨ τ2, τ1, τ2)

I Σb : biFrmop → biTop

Σb(L, L1, L2) := (Σ(L), {â | a ∈ L1}, {â | a ∈ L2})

biTop biFrmop

Top Frmop

Ωb

>
Σb

Ω
>
Σ
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Pairwise Stone spaces are dual to bounded distributive lattices
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Bezhanishvili et a
l.’2010≡

Picado’1994 Picado’1994
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Pairwise Stone spaces are dual to bounded distributive lattices
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The Skula functor

If (X ,S) is a Pervin space, (X , 〈S〉Top, 〈{Uc | U ∈ S}〉Top) is a bispace.

This defines a full embedding

SkPervin : Pervin ↪→ biTop

Proposition

A bitopological space is a T0 compact and 0-dimensional if and only if it

is of the form SkPervin(X ,S) for some complete T0 Pervin space (X ,S).

The bitopological space (X , τ1, τ2) is:

− T0 if (X , τ1 ∨ τ2) is T0;

− compact if (X , τ1 ∨ τ2) is compact;

− 0-dimensional if {U ∈ τk | Uc ∈ τ`} is a basis for τk , where {k, `} = {1, 2}.
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The Skula functor

If (L,S) is a Frith frame, (CSL, ∇L, 〈{∆s | s ∈ S}〉Frm) is a biframe.

This defines a full embedding

SkFrith : Frith ↪→ biFrm

Proposition

A biframe is compact and 0-dimensional if and only if it is of the form

SkFrith(L,S) for some complete Frith frame (L,S).

The biframe (L, L1, L2) is:

− compact if L is compact;

− 0-dimensional if Li = 〈{a ∈ Li complemented | ¬a ∈ Lj}〉Frm with {i , j} = {1, 2}.
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The Skula functor

Proposition (B., Suarez)

The following square commutes up to natural isomorphism.

Frithop biFrmop

Pervin biTop

SkFrith

ΣbΣ

SkPervin
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