Extending Stone duality along full embeddings

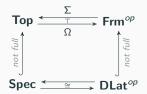
Célia Borlido based on joint work with A. L. Suarez

Centre for Mathematics, University of Coimbra

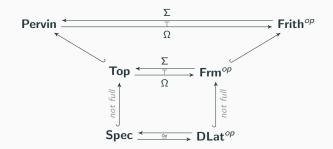
A day on Pointfree Topology Celebrating Jorge Picado's 60th birthday

Coimbra, October 12, 2023

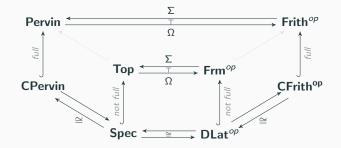
- 2. The categories of Pervin spaces and of Frith frames
- 3. Extending Stone duality along full embeddings
- 4. The bitopological point of view



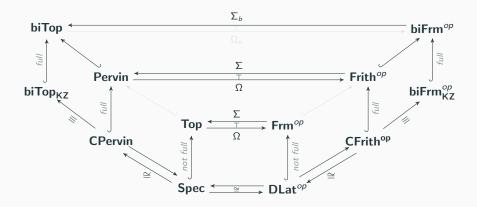
- 2. The categories of Pervin spaces and of Frith frames
- 3. Extending Stone duality along full embeddings
- 4. The bitopological point of view



- 2. The categories of Pervin spaces and of Frith frames
- 3. Extending Stone duality along full embeddings
- 4. The bitopological point of view



- 2. The categories of Pervin spaces and of Frith frames
- 3. Extending Stone duality along full embeddings
- 4. The bitopological point of view



The spatial-sober duality Skip

The spatial-sober duality Skip

Frames

Topological spaces

A frame is a complete lattice L satisfying

$$a \wedge \bigvee_{i \in I} b_i = \bigvee (a \wedge b_i).$$

and continuous functions.

Frame homomorphisms preserve <u>finite meets</u> and arbitrary joins.

► Ω : **Top** \rightarrow **Frm**^{op}

 $\Omega(X) := (\{\text{open subsets of } X\}, \subseteq) \qquad \Omega(X \xrightarrow{f} Y) := (\Omega(Y) \xrightarrow{f^{-1}} \Omega(X))$

► Ω : **Top** \rightarrow **Frm**^{op}

 $\Omega(X) := (\{\text{open subsets of } X\}, \subseteq) \qquad \Omega(X \xrightarrow{f} Y) := (\Omega(Y) \xrightarrow{f^{-1}} \Omega(X))$

► Σ : **Frm**^{op} \rightarrow **Top**

 $\Sigma(L) := \{c. p. filters of L\}$ $\widehat{a} := \{F \mid a \in F\}, \quad a \in L$

$$\Sigma(L \xrightarrow{h} M) := (\Sigma(M) \xrightarrow{h^{-1}} \Sigma(L))$$

► Ω : **Top** \rightarrow **Frm**^{op}

 $\Omega(X) := (\{\text{open subsets of } X\}, \subseteq) \qquad \Omega(X \xrightarrow{f} Y) := (\Omega(Y) \xrightarrow{f^{-1}} \Omega(X))$

► Σ : **Frm**^{op} \rightarrow **Top**

We have an adjunction Ω : **Top** \leftrightarrows **Frm**^{op} : Σ which restricts and co-restricts to a duality between sober spaces and spatial frames.

- Spatial frame: a frame of the form $\Omega(X)$ for some topological space X.
- Sober space: a space that is completely determined by its set of open subsets.

C. Borlido (CMUC)

Bounded distributive lattices seen as coherent frames

A coherent frame is a frame L whose set of compact elements K(L) is closed under finite meets (thus, a sublattice) and join-dense in L.

Bounded distributive lattices seen as coherent frames

A coherent frame is a frame L whose set of compact elements K(L) is closed under finite meets (thus, a sublattice) and join-dense in L.

Coherent homomorphisms are frame homomorphisms that preserve compact elements.

Bounded distributive lattices seen as coherent frames

A coherent frame is a frame L whose set of compact elements K(L) is closed under finite meets (thus, a sublattice) and join-dense in L.

Coherent homomorphisms are frame homomorphisms that preserve compact elements.

If D is a bounded distributive lattice, (Idl(D), ⊆) is a coherent frame.
 If h : C → D is a lattice homomorphism, Idl(h) : (J ∈ Idl(C)) ↦ ⟨h[J]⟩_{Idl} is a coherent homomorphism.

A coherent frame is a frame L whose set of compact elements K(L) is closed under finite meets (thus, a sublattice) and join-dense in L.

Coherent homomorphisms are frame homomorphisms that preserve compact elements.

- If D is a bounded distributive lattice, (Idl(D), ⊆) is a coherent frame.
 If h : C → D is a lattice homomorphism, Idl(h) : (J ∈ Idl(C)) ↦ ⟨h[J]⟩_{Idl} is a coherent homomorphism.
- If L is a coherent frame, K(L) is a bounded distributive lattice.
 If h : L → M is a coherent homomorphism, the restriction and co-restriction K(h) : K(L) → K(M) of h is a lattice homomorphism.

A coherent frame is a frame L whose set of compact elements K(L) is closed under finite meets (thus, a sublattice) and join-dense in L.

Coherent homomorphisms are frame homomorphisms that preserve compact elements.

- If D is a bounded distributive lattice, (Idl(D), ⊆) is a coherent frame.
 If h : C → D is a lattice homomorphism, Idl(h) : (J ∈ Idl(C)) ↦ ⟨h[J]⟩_{Idl} is a coherent homomorphism.
- If L is a coherent frame, K(L) is a bounded distributive lattice.
 If h : L → M is a coherent homomorphism, the restriction and co-restriction K(h) : K(L) → K(M) of h is a lattice homomorphism.

These assignments define an equivalence of categories $DLat \cong CohFrm$

A spectral space is a $\underline{T_0 \text{ compact sober}}$ space (X, τ) whose set of compact open subsets is closed under finite meets and is a basis for the topology.

A spectral space is a T_0 compact sober space (X, τ) whose set of compact open subsets is closed under finite meets and is a basis for the topology.

Spectral maps are continuous functions such that the preimage of compact open subsets is again compact (and open).

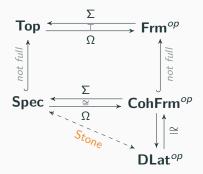
A spectral space is a T_0 compact sober space (X, τ) whose set of compact open subsets is closed under finite meets and is a basis for the topology.

Spectral maps are continuous functions such that the preimage of compact open subsets is again compact (and open).

The adjunction Ω : **Top** \leftrightarrows **Frm**^{op} : Σ restricts and co-restricts to an equivalence

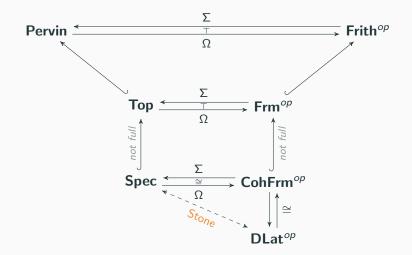
$Spec \cong CohFrm^{op}$

Stone duality for bounded distributive lattices



C. Borlido (CMUC)

Stone duality for bounded distributive lattices



What are the quasi-uniformizable topological spaces?

Every topology comes from a quasi-uniformity!

Every topology comes from a transitive and totally bounded quasi-uniformity.

Pervin spaces

A Pervin space is a pair (X, S), where X is a set and $S \subseteq \mathcal{P}(X)$ is a bounded sublattice.

Pervin spaces

A Pervin space is a pair (X, S), where X is a set and $S \subseteq \mathcal{P}(X)$ is a bounded sublattice.

A morphism of Pervin spaces $f : (X, S) \to (Y, T)$ is a map $f : X \to Y$ such that for every $T \in T$, we have $f^{-1}(T) \in S$.

Pervin spaces

A Pervin space is a pair (X, S), where X is a set and $S \subseteq \mathcal{P}(X)$ is a bounded sublattice.

A morphism of Pervin spaces $f : (X, S) \to (Y, T)$ is a map $f : X \to Y$ such that for every $T \in T$, we have $f^{-1}(T) \in S$.

There is a full embedding **Top** \hookrightarrow **Pervin**, $(X, \tau) \mapsto (X, \tau)$.

Theorem (Pin, 2017)

The category **Pervin** of Pervin spaces is equivalent to the category of transitive and totally bounded quasi-uniform spaces.

C. Borlido (CMUC)

Frith frames

A Frith frame is a pair (L, S), where L is a frame and $S \subseteq L$ is a join-dense bounded sublattice.

Frith frames

A Frith frame is a pair (L, S), where L is a frame and $S \subseteq L$ is a join-dense bounded sublattice.

A morphism of Frith frames $h: (L, S) \to (M, T)$ is a frame homomorphism $h: L \to S$ such that $h[S] \subseteq T$.

Frith frames

A Frith frame is a pair (L, S), where L is a frame and $S \subseteq L$ is a join-dense bounded sublattice.

A morphism of Frith frames $h: (L, S) \to (M, T)$ is a frame homomorphism $h: L \to S$ such that $h[S] \subseteq T$.

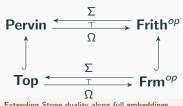
There is a full embedding **Frm** \hookrightarrow **Frith**, $L \mapsto (L, L)$.

Theorem (B., Suarez)

The category **Frith** of Frith frames is a coreflective subcategory of the category of transitive and totally bounded quasi-uniform frames.

C. Borlido (CMUC)

The Frith-Pervin adjunction

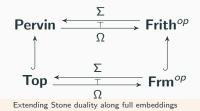


C. Borlido (CMUC)

The Frith-Pervin adjunction

► Ω : **Pervin** \rightarrow **Frith**^{op}

$$\Omega(X, \mathcal{S}) := (\langle \mathcal{S} \rangle_{\mathsf{Frm}}, \ \mathcal{S})$$
$$\Omega((X, \mathcal{S}) \xrightarrow{f} (Y, \mathcal{T})) := (\Omega(Y, \mathcal{T}) \xrightarrow{f^{-1}} \Omega(X, \mathcal{S}))$$



The Frith-Pervin adjunction

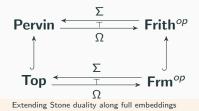
► Ω : **Pervin** \rightarrow **Frith**^{op}

$$\Omega(X, \mathcal{S}) := (\langle \mathcal{S} \rangle_{\mathsf{Frm}}, \mathcal{S})$$

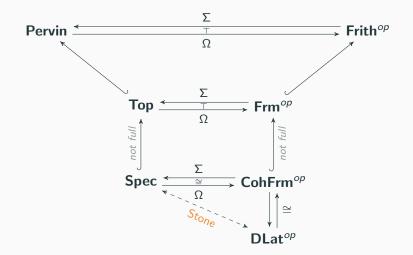
$$\Omega((X, \mathcal{S}) \xrightarrow{f} (Y, \mathcal{T})) := (\Omega(Y, \mathcal{T}) \xrightarrow{f^{-1}} \Omega(X, \mathcal{S}))$$

 \blacktriangleright Σ : Frith^{op} \rightarrow Pervin

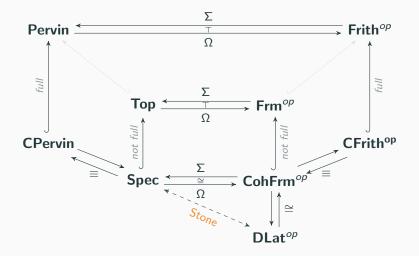
$$\begin{split} \Sigma(L,S) &:= (\Sigma(L), \ \{\widehat{s} \mid s \in S\}) & (\widehat{s} := \{F \mid s \in F\}) \\ \Sigma((L,S) \xrightarrow{h} (M,T)) &:= (\Sigma(M,T) \xrightarrow{h^{-1}} \Sigma(L,S)) \end{split}$$



Stone duality for bounded distributive lattices



Stone duality for bounded distributive lattices



Theorem (Gehrke, Grigorieff, Pin, 2010; Pin, 2017) The categories of spectral spaces and of complete T_0 Pervin spaces are isomorphic.

Symmetric Frith frames

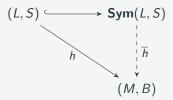
A Frith frame (L, S) is symmetric if S is a Boolean algebra.

Symmetric Frith frames

A Frith frame (L, S) is symmetric if S is a Boolean algebra. **Proposition (B., Suarez)** Symmetric Frith frames form a full reflective subcategory of **Frith**. That is, for every Frith frame (L, S), there exists a symmetric Frith frame

 $\operatorname{Sym}(L,S) = (\mathcal{C}_{S}L, \langle S \rangle_{\operatorname{BA}}),$

called the symmetrization of (L, S), such that for every $h : (L, S) \to (M, B)$ with (M, B) symmetric there is a unique \overline{h} making the following diagram commute:



Completion of Frith frames

A symmetric Frith frame (L, B) is complete if every dense surjection¹ (M, C) → (L, B) with (M, C) symmetric is an isomorphism.

 $^{1}h:(M,C) \twoheadrightarrow (L,B)$ is a dense surjection if $(h(a) = 0 \implies a = 0)$ and h[C] = B.

Completion of Frith frames

- A symmetric Frith frame (L, B) is complete if every dense surjection¹ (M, C) → (L, B) with (M, C) symmetric is an isomorphism.
- ▶ A Frith frame (L, S) is complete provided **Sym**(L, S) is complete.

 $^{1}h:(M,C) \twoheadrightarrow (L,B)$ is a dense surjection if $(h(a) = 0 \implies a = 0)$ and h[C] = B.

Completion of Frith frames

- A symmetric Frith frame (L, B) is complete if every dense surjection¹ (M, C) → (L, B) with (M, C) symmetric is an isomorphism.
- ▶ A Frith frame (L, S) is complete provided **Sym**(L, S) is complete.

Theorem (B., Suarez)

A Frith frame (L, S) is complete if and only if L = Idl(S).

 $^{1}h:(M,C) \twoheadrightarrow (L,B)$ is a dense surjection if $(h(a) = 0 \implies a = 0)$ and h[C] = B.

Completion of Frith frames

A symmetric Frith frame (L, B) is complete if every dense surjection¹ (M, C) → (L, B) with (M, C) symmetric is an isomorphism.

▶ A Frith frame (L, S) is complete provided **Sym**(L, S) is complete.

Theorem (B., Suarez)

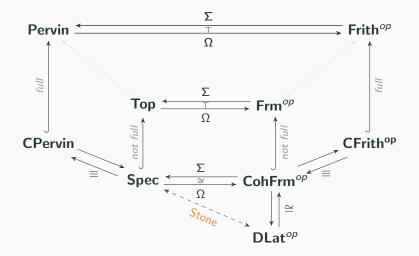
A Frith frame (L, S) is complete if and only if L = Idl(S).

Corollary

The categories of coherent frames and of complete Frith frames are isomorphic.

 $^{1}h:(M,C) \twoheadrightarrow (L,B)$ is a dense surjection if $(h(a) = 0 \implies a = 0)$ and h[C] = B.

Stone duality for bounded distributive lattices



The bitopological point of view

Bitopological spaces and biframes

A bitopological space is a triple (X, τ_1, τ_2) , where τ_i is a topology on X. A biframe is a triple (L, L_1, L_2) of frames st $L_i \leq L$ and $L = \langle L_1 \cup L_2 \rangle_{Frm}$.

Bitopological spaces and biframes

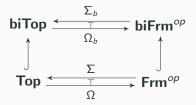
A bitopological space is a triple (X, τ_1, τ_2) , where τ_i is a topology on X. A biframe is a triple (L, L_1, L_2) of frames st $L_i \leq L$ and $L = \langle L_1 \cup L_2 \rangle_{Frm}$.

• Ω_b : **biTop** \rightarrow **biFrm**^{op}

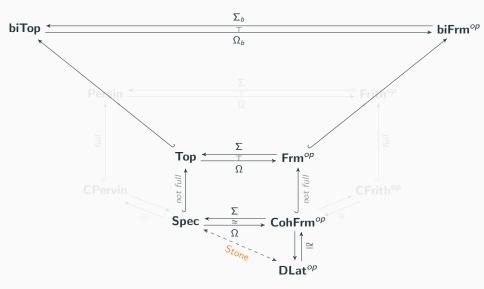
 $\Omega_b(X, \tau_1, \tau_2) := (\tau_1 \lor \tau_2, \ \tau_1, \ \tau_2)$

► Σ_b : biFrm^{op} \rightarrow biTop

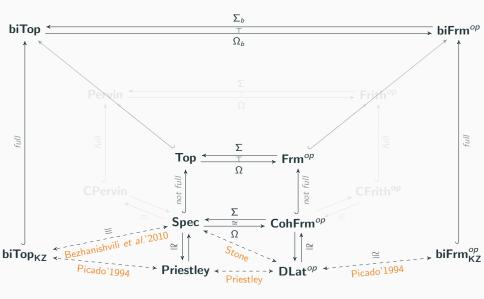
 $\Sigma_b(L,L_1,L_2) := (\Sigma(L), \ \{\widehat{a} \mid a \in L_1\}, \ \{\widehat{a} \mid a \in L_2\})$



Pairwise Stone spaces are dual to bounded distributive lattices



Pairwise Stone spaces are dual to bounded distributive lattices



If (X, S) is a Pervin space, $(X, \langle S \rangle_{Top}, \langle \{U^c \mid U \in S\} \rangle_{Top})$ is a bispace.

This defines a full embedding

 $\mathsf{Sk}_{\operatorname{Pervin}}:\mathsf{Pervin}\hookrightarrow\mathsf{biTop}$

If (X, S) is a Pervin space, $(X, \langle S \rangle_{\mathsf{Top}}, \langle \{U^c \mid U \in S\} \rangle_{\mathsf{Top}})$ is a bispace.

This defines a full embedding

$\textbf{Sk}_{Pervin}:\textbf{Pervin} \hookrightarrow \textbf{biTop}$

Proposition

A bitopological space is a T_0 compact and 0-dimensional if and only if it is of the form $\mathbf{Sk}_{Pervin}(X, S)$ for some complete T_0 Pervin space (X, S).

The bitopological space (X, τ_1, τ_2) is:

- $\underline{T_0}$ if $(X, \tau_1 \lor \tau_2)$ is T_0 ;
- compact if $(X, \tau_1 \lor \tau_2)$ is compact;
- <u>0-dimensional</u> if $\{U \in \tau_k \mid U^c \in \tau_\ell\}$ is a basis for τ_k , where $\{k, \ell\} = \{1, 2\}$.

If (L, S) is a Frith frame, $(C_S L, \nabla L, \langle \{\Delta_s \mid s \in S\} \rangle_{Frm})$ is a biframe. This defines a full embedding

 $\textbf{Sk}_{Frith}:\textbf{Frith} \hookrightarrow \textbf{biFrm}$

If (L, S) is a Frith frame, $(C_S L, \nabla L, \langle \{\Delta_s \mid s \in S\} \rangle_{Frm})$ is a biframe. This defines a full embedding

 $\mathsf{Sk}_{\mathrm{Frith}}:\mathsf{Frith}\hookrightarrow\mathsf{biFrm}$

Proposition

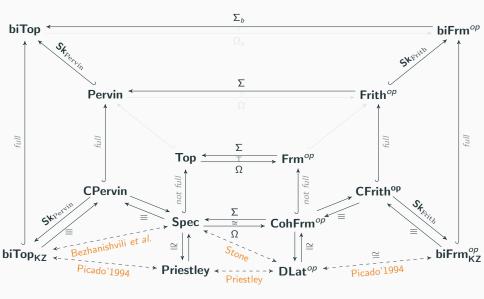
A biframe is compact and 0-dimensional if and only if it is of the form $\mathbf{Sk}_{\text{Frith}}(L, S)$ for some complete Frith frame (L, S).

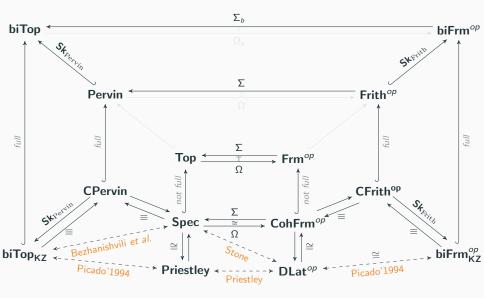
The biframe (L, L_1, L_2) is:

- compact if L is compact;
- <u>0-dimensional</u> if $L_i = \langle \{a \in L_i \text{ complemented } | \neg a \in L_j \} \rangle_{\text{Frm}}$ with $\{i, j\} = \{1, 2\}$.

Proposition (B., Suarez)

The following square commutes up to natural isomorphism.





Thank you for your attention!