

Measurable functions on σ -frames

A Day on Pointfree Topology

Raquel Viegas Bernardes

12 October 2023

UC|UP Joint PhD Program in Mathematics Advisor: Professor Jorge Picado (Univ. Coimbra)

Recall:

The frame of reals is the frame $\mathfrak{L}(\mathbb{R})$ generated by all elements (p,-) and (-,q), with $p,q\in\mathbb{Q}$, and relations

$$\begin{array}{ll} (R_1) & (p,-) \land (-,q) = 0 \text{ whenever } p \ge q; \\ (R_2) & (p,-) \lor (-,q) = 1 \text{ whenever } p < q; \\ (R_3) & (p,-) = \bigvee \{(r,-) \mid p < r\}; \\ (R_4) & (-,q) = \bigvee \{(-,s) \mid s < q\}; \\ (R_5) & 1 = \bigvee \{(p,-) \mid p \in \mathbb{Q}\}; \\ (R_6) & 1 = \bigvee \{(-,q) \mid q \in \mathbb{Q}\}. \end{array}$$

The frame $\mathfrak{L}(\mathbb{R})$ of extended reals is the frame generated by all (p, -) and (-, q), with $p, q \in \mathbb{Q}$, subject to the relations (R_1) - (R_4) .

Proposition

Let L be a σ -frame with a countable set of generators. Then L is a frame, and σ Frm(L, M) = Frm(L, M) for any frame M.

Localic real and extended real functions

From now one, we will mainly work on a σ -frame L.

Definition: A localic real-valued function on L is a σ -frame homomorphism $f : \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}(L)$ and

$$\mathsf{F}(L) = \sigma \mathsf{Frm}(\mathfrak{L}(\mathbb{R}), \mathfrak{C}(L)) = \mathsf{Frm}(\mathfrak{L}(\mathbb{R}), \mathfrak{C}(L))$$

Definition: A localic extended real-valued function on L is a σ -frame homomorphism $f : \mathfrak{L}(\overline{\mathbb{R}}) \to \mathfrak{C}(L)$, and

$$\overline{\mathsf{F}}(L) = \sigma \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathfrak{C}(L)) = \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathfrak{C}(L))$$

• We say that an extended real function $f: \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}(L)$ is finite if $f(\omega) = 1$, where $\omega = \left(\bigvee_{p \in \mathbb{Q}}(p, -)\right) \land \left(\bigvee_{q \in \mathbb{Q}}(-, q)\right)$, and we have that

 $\{f \in \overline{\mathsf{F}}(L) | f \text{ is finite}\} \cong \mathsf{F}(L) \qquad (\text{Recall: } \downarrow \omega \cong \mathfrak{L}(\mathbb{R}))$

Measurable functions

Given an extended real function $f : \mathfrak{L}(\overline{\mathbb{R}}) \to \mathfrak{C}(L)$ on L:

Definitions:

1. We say that f is **lower measurable** (resp. **upper measurable**) if $f(r,-) \in \nabla[L]$ for every $r \in \mathbb{Q}$ (resp. $f(-,r) \in \nabla[L]$) for every $r \in \mathbb{Q}$), and we denote by $\overline{\mathrm{LM}}(L)$ and $\overline{\mathrm{UM}}(L)$ the corresponding collections of lower measurable and upper measurable extended real functions.

2. Whenever $f \in \overline{LM}(L) \cap \overline{UM}(L)$, we say that f is measurable, and we shall denote $\overline{LM}(L) \cap \overline{UM}(L)$ by $\overline{M}(L)$. In other words, f is measurable if

 $f(p,q) \in \nabla[L], \forall p,q \in \mathbb{Q}$

- $\overline{\mathsf{M}}(L) = \sigma \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), L) \text{ as } \nabla[L] \cong L;$
- $\overline{\mathsf{M}}(\mathfrak{C}(L)) = \overline{\mathsf{F}}(L);$

• A measurable function $f: \mathfrak{L}(\overline{\mathbb{R}}) \to L$ preserves all joins despite the fact that L has not necessarily arbitrary joins, that is, for any $A \subseteq \mathfrak{L}(\overline{\mathbb{R}})$,

$$\bigvee_{a \in A} f(a) \text{ exists in } L \text{ and } \bigvee_{a \in A} f(a) = f\left(\bigvee_{a \in A} a\right).$$

Restricting to the finite-valued case, we introduce the classes

$$\begin{split} \mathsf{LM}(L) &\coloneqq \overline{\mathsf{LM}}(L) \cap \mathsf{F}(L) \quad (\text{of lower measurable real functions}); \\ \mathsf{UM}(L) &\coloneqq \overline{\mathsf{UM}}(L) \cap \mathsf{F}(L) \quad (\text{of upper measurable real functions}); \\ \mathsf{M}(L) &\coloneqq \overline{\mathsf{M}}(L) \cap \mathsf{F}(L) \quad (\text{of measurable real functions}). \end{split}$$

We have

 $\overline{\mathsf{M}}(L) \subseteq \overline{\mathsf{F}}(L)$ $\cup | \qquad \cup |$ $\mathsf{M}(L) \subseteq \mathsf{F}(L).$

$\sigma\text{-scales}$

In a frame L we have:

extended scales (maps $\sigma \colon \mathbb{Q} \to L$ s.t. $\sigma(r) \prec \sigma(s)$ whenever r < s) generating continuous extended real functions, and

scales (extended scales $\sigma \colon \mathbb{Q} \to L$ s.t. $\bigvee_{r \in \mathbb{Q}} \sigma(r) = 1 = \bigvee_{r \in \mathbb{Q}} \sigma(r)^*$) generating continuous real functions.

Recall:

 $a \prec b \equiv a^* \lor b = 1$ $\equiv \exists u \in L : a \land u = 0 \text{ and } u \lor b = 1.$ $a \prec \!\!\prec b \equiv \exists a_q \in L, q \in [0, 1] \cap \mathbb{Q} : a_0 = a, a_1 = b \text{ and } a_p \prec a_q (p < q).$ **Definition**: A map $\varphi : \mathbb{Q} \to L$ is a σ -scale in L (or an ascending σ -scale) if there exists a family $(c_r)_{r \in \mathbb{Q}}$ of elements of L such that

 $\varphi(s) \wedge c_r = 0$ whenever $s \leq r$ and $c_r \lor \varphi(s) = 1$ whenever r < s.

Furthermore, we say that φ is finite if $\bigvee_{r \in \mathbb{Q}} \varphi(r) = 1 = \bigvee_{r \in \mathbb{Q}} c_r$.

σ -scales

 $\begin{array}{l} \textbf{Proposition}\\ \textit{Given a map } \varphi \colon \mathbb{Q} \to L \colon\\ \varphi \textit{ is a } \sigma \textit{-scale iff } \varphi(r) \prec \varphi(s) \textit{ whenever } r < s.\\ \\ \varphi \textit{ is a finite } \sigma \textit{-scale iff } \varphi \textit{ is a } \sigma \textit{-scale such that } \bigvee_{r \in \mathbb{Q}} \varphi(r) = 1 \textit{ and there }\\ \\ \textit{are } c_{rs} \in L \textit{ such that } \bigvee \{c_{rs} \mid r, s \in \mathbb{Q}, r < s\} = 1, \textit{ with } \varphi(r) \land c_{rs} = 0\\ \\ & and \ c_{rs} \lor \varphi(s) = 1 \textit{ whenever } r < s. \end{array}$

CONSEQUENTLY: If L is a frame, then

(1) σ -scales in L are precisely the extended scales in L.

(2) finite σ -scales in L are precisely the scales in L.

Proposition: Let L be a σ -frame. Given a σ -scale $\varphi \colon \mathbb{Q} \to L$ and a family $(c_r)_{r \in \mathbb{Q}}$ in \mathcal{C}_{φ} , the map $f \colon \mathfrak{L}(\overline{\mathbb{R}}) \to L$ determined by

$$f(p,-) = \bigvee_{r > p} c_r \text{ and } f(-,q) = \bigvee_{r < q} \varphi(r) \quad (p,q \in \mathbb{Q})$$

is a measurable function on L. Moreover, if φ is finite, then f is a finite-valued function.

REMARK: As $\overline{F}(L) = \overline{M}(\mathcal{C}(L))$ and $F(L) = M(\mathcal{C}(L))$, σ -scales and finite σ -scales in $\mathcal{C}(L)$ generate extended real and real-valued functions on L.

Insertion, extension and separation results

Katětov relation

Definition: A **Katětov relation** is a binary relation \Subset on a lattice L satisfying the following conditions for all $a, b, a', b' \in L$:

 $\begin{array}{ll} (K_1) & a \Subset b \Rightarrow a \leq b; \\ (K_2) & a' \leq a, a \Subset b, b \leq b' \Rightarrow a' \Subset b'; \\ (K_3) & a \Subset b, a' \Subset b \Rightarrow (a \lor a') \Subset b; \\ (K_4) & a \Subset b, a \Subset b' \Rightarrow a \Subset (b \land b'); \\ (K_5) & a \Subset b \Rightarrow \exists c \in L : a \Subset c \Subset b. \end{array}$

Katětov Lemma: Let \subseteq be a Katětov relation on L and \triangleleft a transitive and irreflexive (i.e, a relation that is not reflexive) relation on a countable set D. Consider two families $(a_d)_{d\in D}$ and $(b_d)_{d\in D}$ of elements of L such that

 $d_1 \triangleleft d_2$ implies $a_{d_2} \leq a_{d_1}, b_{d_2} \leq b_{d_1}$ and $a_{d_2} \in b_{d_1}$.

Then there exists a family $(c_d)_{d\in D}$ in L such that

 $d_1 \triangleleft d_2$ implies $c_{d_2} \Subset c_{d_1}, a_{d_2} \Subset c_{d_1}$ and $c_{d_2} \Subset b_{d_1}$.

For any $\theta_A, \theta_B \in \mathfrak{C}(L)$, define

 $\theta_A \Subset_{\overline{M}} \theta_B \equiv \exists f \in \overline{\mathsf{M}}(L) \colon \theta_A \subseteq f(p,-)^* \text{ and } f(-,q) \subseteq \theta_B \text{ for some } p < q.$

We write $\theta_A \subseteq \theta_B$ whenever $f \in \mathsf{M}(L)$.

Lemma: For any $\theta_A, \theta_B \in \mathfrak{C}(L)$ we have:

(1) $\theta_A \Subset_{\overline{M}} \theta_B$ if and only if there is some $f \in \overline{M}(L)$ such that $\theta_A \subseteq f(0,-)^*$ and $f(-,1) \subseteq \theta_B$. Moreover, $\theta_A \Subset_M \theta_B$ if and only if such f is finite-valued.

(2) If $\theta_A \subseteq_{\overline{M}} \theta_B$ then $\theta_B^* \subseteq_{\overline{M}} \theta_A^*$. In particular, if $\theta_A \subseteq_M \theta_B$ then $\theta_B^* \subseteq_M \theta_A^*$.

Proposition: Both $\subseteq_{\overline{M}}$ and \subseteq_M are Katětov relations on $\mathcal{C}(L)$.

Given a σ -frame L, a relation $R \subseteq \mathfrak{C}(L)$ is **separating** if $\theta_A R \ \theta_B$ implies the existence of $a, b \in L$ such that $\theta_A \subseteq \Delta_a \subseteq \theta_B$ and $\theta_A \subseteq \nabla_b \subseteq \theta_B$.

Proposition: Let L be a σ -frame, φ a σ -scale in $\mathcal{C}(L)$ and R a separating relation on $\mathcal{C}(L)$ such that $\varphi(r)R \varphi(s)$ whenever r < s. Then the function $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{C}(L)$ generated by φ is measurable. In particular, if φ is finite, then f is finite-valued.

Basic Insertion Theorem

Basic Insertion Theorem: Given functions $g, h: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathfrak{C}(L)$ on a σ -frame L such that $g \leq h$, the following statements are equivalent:

- (i) There exists a measurable function $f: \mathfrak{L}(\overline{\mathbb{R}}) \to L$ such that $g \leq f \leq h$.
- (ii) For each p < q, $h(p, -)^* \Subset_{\overline{M}} g(-, q)$.
- (iii) There exist σ -scales φ_1 and φ_2 generating g and h, respectively, such that $\varphi_2(r) \Subset_{\overline{M}} \varphi_1(s)$ whenever r < s.
- (iv) There exist σ -scales φ_1 and φ_2 generating g and h, respectively, and a separating Katětov relation R on $\mathcal{C}(L)$ such that $\varphi_2(r)R \varphi_1(s)$ whenever r < s.

Corollary: Let θ_A, θ_B be complemented congruences on a σ -frame L such that $\theta_A \subseteq \theta_B$. There exists a measurable function $f \colon \mathfrak{L}(\mathbb{R}) \to L$ satisfying $\chi_{\theta_A} \leq f \leq \chi_{\theta_B}$ if and only if $\theta_B^* \Subset_M \theta_A^*$.

Consider a σ -sublocale S of L and the σ -frame homomorphism $q_S \colon \mathfrak{C}(L) \to \mathfrak{C}(S)$ given by $q_S(\theta) = \theta \lor \theta_S$.

Definition: Let $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathfrak{C}(S)$ be a function on S. A function $\widetilde{f}: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathfrak{C}(L)$ is an **extension of** f over L if $f = q_S \circ \widetilde{f}$.

Proposition: Let S be a complemented σ -sublocale of a σ -locale L and let $f: \mathfrak{L}(\mathbb{R}) \to S$ be a measurable function such that $\mathbf{0}_S \leq f \leq \mathbf{1}_S$. The following statements are equivalent:

(i) f has a finite-valued measurable extension over L.

(ii) For each p < q, $f(p, -)^{*_L} \Subset_M f(-, q)$ in $\mathcal{C}(L)$.

Proposition: Given a σ -frame L and closed congruences $\nabla_a \subseteq \nabla_b$, there exists a measurable $f: \mathfrak{L}(\mathbb{R}) \to L$ satisfying $\chi_{\nabla_a} \leq f \leq \chi_{\nabla_b}$ if and only if $a \prec d$.

Proposition: Given a σ -frame L and open congruences $\Delta_a \subseteq \Delta_b$, there exists a measurable $f: \mathfrak{L}(\mathbb{R}) \to L$ satisfying $\chi_{\Delta_a} \leq f \leq \chi_{\Delta_b}$ if and only if $b \prec\!\!\prec a$.

Consider the relations \Subset_N and \Subset_D on $\mathcal{C}(L)$ given by

$$\theta_A \Subset_N \theta_B \equiv \exists u, v \in L : \theta_A \subseteq \Delta_u \subseteq \nabla_v \subseteq \theta_B$$

and
$$\theta_A \Subset_D \theta_B \equiv \exists u, v \in L : \theta_A \subseteq \nabla_u \subseteq \Delta_v \subseteq \theta_B.$$

REMARK:

L normal $\Rightarrow \Subset_N$ is a separating Katětov relation L extremally disconnected $\Rightarrow \Subset_D$ is a separating Katětov relation

Lemma: For any σ -frame L, $\subseteq_M \subseteq \subseteq_N \cap \subseteq_D$.

Theorem The following statements are equivalent for a σ -frame L.

(i) L is normal, i.e., for all $a, b \in L$,

 $a \lor b = 1 \Rightarrow \exists u, v \in L : u \land v = 0 \text{ and } a \lor u = 1 = b \lor v.$

- (ii) (Insertion) For any $g \in \overline{\text{UM}}(L)$ and $h \in \overline{\text{LM}}(L)$ such that $g \leq h$, there exists an $f \in \overline{\text{M}}(L)$ such that $g \leq f \leq h$.
- (iii) (Insertion) For any $g \in UM(L)$ and $h \in LM(L)$ such that $g \leq h$, there exists an $f \in M(L)$ such that $g \leq f \leq h$.
- (iv) (Separation) For every $a, b \in L$, $a \vee b = 1$ implies that $\Delta_a \Subset_M \nabla_b$.
- (v) (Extension) For each closed σ -sublocale S of L, every $f \in M(S)$ such that $\mathbf{0}_S \leq f \leq \mathbf{1}_S$ has a finite-valued measurable extension over L.

Theorem The following statements are equivalent for a σ -frame L.

(i) L is extremally disconnected, i.e., for all $a, b \in L$

 $a \wedge b = 0 \Rightarrow \exists u, v \in L : u \lor v = 1 \text{ and } a \wedge u = 0 = b \wedge v.$

- (ii) (Insertion) For any $g \in \overline{LM}(L)$ and $h \in \overline{UM}(L)$ such that $g \leq h$, there exists an $f \in \overline{M}(L)$ such that $g \leq f \leq h$.
- (iii) (Insertion) For any $g \in LM(L)$ and $h \in UM(L)$ such that $g \le h$, there exists an $f \in M(L)$ such that $g \le f \le h$.
- (iv) (Separation) For every $a, b \in L$, $a \wedge b = 0$ implies that $\nabla_a \Subset_M \Delta_b$.
- (v) (Extension) For each open σ -sublocale S of L, every $f \in M(S)$ such that $\mathbf{0}_S \leq f \leq \mathbf{1}_S$ has a finite-valued measurable extension over L.

Theorem: The following statements are equivalent for a σ -frame L.

- (i) L is \mathcal{F} -perfect, i.e., for each $a \in L$ there is a sequence $(a_i)_{i \in \mathbb{N}} \subseteq L$ such that $\Delta_a = \bigwedge_{i \in \mathbb{N}} \nabla_{a_i}$.
- (ii) (Insertion) For any $-u, l \in \overline{\mathsf{LM}}(L)$ such that l and -u are sum compatible and $\mathbf{0} \leq l u$, there exist $u_1 \in \mathsf{UM}(L)$ and $l_1 \in \mathsf{LM}(L)$ such that $\mathbf{0} \leq u_1 \leq l u$, $u l + u_1 \leq l_1 \leq \mathbf{0}$ and

$$(l-u)(0,-)^* = u_1(0,-)^* = (-l_1)(0,-)^*.$$

(iii) (Insertion) For any $u \in UM(L)$ and $l \in LM(L)$ such that $u \leq l$, there exist $u' \in UM(L)$ and $l' \in LM(L)$ such that $u \leq u' \leq l' \leq l$ and

$$(u'-u)(0,-)^* = (l-l')(0,-)^* = (l-u)(0,-)^*.$$

(iv) (Extension) For each closed σ -sublocale S of L, every $f \in \mathsf{M}(S)$ with $\mathbf{0}_S \leq f \leq \mathbf{1}_S$ has an upper measurable extension $u' \colon \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}(L)$ and a lower measurable extension $l' \colon \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}(L)$ such that $\mathbf{0} \leq u' \leq l' \leq \mathbf{1}$ and

$$\theta_S^* \lor u'(0,-)^* = \theta_S^* \lor l'(-,1)^* = \theta_S^*.$$

(v) (Separation) For any $a, b \in L$ such that $a \lor b = 1$, there are $u' \in UM(L)$ and $l' \in LM(L)$ such that $\mathbf{0} \le u' \le l' \le \mathbf{1}$,

$$u'(0,-)^* \vee l'(-,1)^* \subseteq \Delta_{a \wedge b},$$

$$\Delta_a \subseteq u'(p,-) \wedge l'(-,q) \text{ for all } p < 0, q > 0,$$

and
$$\Delta_b \subseteq u'(p,-) \wedge l'(-,q) \text{ for all } p < 1, q > 1.$$

Theorem: The following statements are equivalent for a σ -frame L.

- (i) L is \mathcal{G} -perfect, i.e., for each $a \in L$ there is a sequence $(a_i)_{i \in \mathbb{N}} \subseteq L$ such that $\nabla_a = \bigvee_{i \in \mathbb{N}} \Delta_{a_i}$.
- (ii) (Insertion) For any $-u, l \in \overline{\text{LM}}(L)$ such that l and -u are sum compatible and $\mathbf{0} \leq l u$, there exist $u_1 \in \text{UM}(L)$ and $l_1 \in \text{LM}(L)$ such that $\mathbf{0} \leq u_1 \leq l u$, $u l + u_1 \leq l_1 \leq \mathbf{0}$ and

$$(l-u)(0,-) = u_1(0,-) = (-l_1)(0,-).$$

(iii) (Insertion) For any $u \in UM(L)$ and $l \in LM(L)$ such that $u \leq l$, there exist $u' \in UM(L)$ and $l' \in LM(L)$ such that $u \leq u' \leq l' \leq l$ and

$$(u'-u)(0,-) = (l-l')(0,-) = (l-u)(0,-).$$

(iv) (Extension) For each closed σ -sublocale S of L, every $f \in \mathsf{M}(S)$ with $\mathbf{0}_S \leq f \leq \mathbf{1}_S$ has an upper measurable extension $u' \colon \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}(L)$ and a lower measurable extension $l' \colon \mathfrak{L}(\mathbb{R}) \to \mathfrak{C}(L)$ such that $\mathbf{0} \leq u' \leq l' \leq \mathbf{1}$ and

$$\theta_S \wedge u'(0,-) = \theta_S \wedge l'(-,1) = \theta_S.$$

(v) (Separation) For any $a, b \in L$ such that $a \lor b = 1$, there are $u' \in UM(L)$ and $l' \in LM(L)$ such that $\mathbf{0} \le u' \le l' \le \mathbf{1}$,

$$\begin{aligned} \nabla_{a \wedge b} &\subseteq u'(0, -) \wedge l'(-, 1), \\ \Delta_a &\subseteq u'(p, -) \wedge l'(-, q) \text{ for all } p < 0, q > 0, \\ \text{and } \Delta_b &\subseteq u'(p, -) \wedge l'(-, q) \text{ for all } p < 1, q > 1. \end{aligned}$$

Characterisation of perfect normality

Theorem: The following statements are equivalent for a σ -frame L.

- (i) L is perfectly normal, i.e., normal and \mathcal{F} -perfect ($\equiv \mathcal{G}$ -perfect).
- (ii) L is regular, i.e., $\forall a \in L, a = \bigvee_{n \in \mathbb{N}} a_n$, with $a_n \prec a$.
- (iii) (Insertion) For any $u \in UM(L)$ and $l \in LM(L)$ such that $u \leq l$, there exists an $f \in M(L)$ such that $u \leq f \leq l$ and

$$(f - u)(0, -) = (l - f)(0, -) = (l - u)(0, -)$$

(iv) (Extension) For each closed σ -sublocale S of L, every $f \in \mathsf{M}(S)$ with $\mathbf{0}_S \leq f \leq \mathbf{1}_S$ has a measurable extension $\tilde{f} \colon \mathfrak{L}(\mathbb{R}) \to L$ such that that $\mathfrak{O} \subset \tilde{f}(\mathfrak{O} \to \mathfrak{I}) \land \tilde{f}(\mathfrak{I} \to \mathfrak{I})$

$$\theta_S \subseteq \widetilde{f}(0,-) \wedge \widetilde{f}(-,1).$$

(v) (Separation) For every $a, b \in L$ such that $a \vee b = 1$, there exists an $f \in M(L)$ such that $\mathbf{0} \leq f \leq \mathbf{1}$,

$$\begin{split} \Delta_b &\subseteq f(p,-) \wedge f(-,q) \text{ for all } p < 1, q > 1, \\ \Delta_a &\subseteq f(p,-) \wedge f(-,q) \text{ for all } p < 0, q > 0, \\ \text{ and } \nabla_{a \wedge b} &\subseteq f(0,-) \wedge f(-,1). \end{split}$$

24

$\mathcal{F} ext{-perfectness}$	+	Normality	=	Perfect normality
insertion		insertion		insertion
separation		insertion		separation
extension		insertion		extension

References

- B. Banaschewski, *The real numbers in pointfree topology*, Textos de Matemática, vol. 12, Universidade de Coimbra, 1997.
- (2) B. Banaschewski, J. Gutiérrez García, and J. Picado, Extended real functions in pointfree topology, J. Pure Appl. Algebra 216 (2012), no. 4, 905–922.
- (3) R. Bernardes, Measurable functions on σ-frames, Topology Appl. 336 (2023), Paper No. 108609, 26.
- (4) J. Gutiérrez García and T. Kubiak, Inserting measurable functions precisely, Czechoslovak Math. J. 64 (2014), 743–749.
- (5) J. Gutiérrez García, T. Kubiak, and J. Picado, Localic real functions: a general setting, J. Pure Appl. Algebra 213 (2009), no. 6, 1064–1074.
- (6) W. Kotzé, T. Kubiak, Insertion of a measurable function, J. Austral. Math. Soc. Ser. A 57 (1994), 295–304.
- (7) J. Picado and A. Pultr, Frames and locales: topology without points, Frontiers in Mathematics, vol. 28, Springer, Basel, 2012.
- (8) A. Simpson, Measure, randomness and sublocales, Ann. Pure Appl. Logic 163 (2012), 1642–1659.