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Frame of reals and frame of extended recall

Recall:

The frame of reals is the frame L(R) generated by all elements (p,—)

and (—, q), with p, q ∈ Q, and relations

(R1) (p,—) ∧ (—, q) = 0 whenever p ≥ q;

(R2) (p,—) ∨ (—, q) = 1 whenever p < q;

(R3) (p,—) =
∨
{(r,—) | p < r};

(R4) (—, q) =
∨
{(—, s) | s < q};

(R5) 1 =
∨
{(p,—) | p ∈ Q};

(R6) 1 =
∨
{(—, q) | q ∈ Q}.

The frame L(R) of extended reals is the frame generated by all (p,—)

and (—, q), with p, q ∈ Q, subject to the relations (R1)-(R4).
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Also recall that:

Proposition
Let L be a σ-frame with a countable set of generators. Then L is a

frame, and σFrm(L,M) = Frm(L,M) for any frame M .
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Localic real and extended real functions

From now one, we will mainly work on a σ-frame L.

Definition: A localic real-valued function on L is a σ-frame

homomorphism f : L(R)→ C(L) and

F(L) = σFrm(L(R),C(L)) = Frm(L(R),C(L))

Definition: A localic extended real-valued function on L is a σ-frame

homomorphism f : L(R)→ C(L), and

F(L) = σFrm(L(R),C(L)) = Frm(L(R),C(L))

• We say that an extended real function f : L(R)→ C(L) is finite if

f(ω) = 1, where ω =
(∨

p∈Q(p,—)
)
∧
(∨

q∈Q(—, q)
)
, and we have that

{f ∈ F(L)|f is finite} ∼= F(L) (Recall: ↓ ω ∼= L(R))
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Measurable functions



Measurable and semimeasurable funcions

Given an extended real function f : L(R)→ C(L) on L:

Definitions:

1. We say that f is lower measurable (resp. upper measurable) if

f(r,—) ∈ ∇[L] for every r ∈ Q (resp. f(—, r) ∈ ∇[L]) for every r ∈ Q),

and we denote by LM(L) and UM(L) the corresponding collections of

lower measurable and upper measurable extended real functions.

2. Whenever f ∈ LM(L) ∩ UM(L), we say that f is measurable, and we

shall denote LM(L)∩UM(L) by M(L). In other words, f is measurable if

f(p, q) ∈ ∇[L],∀p, q ∈ Q
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Remarks

• M(L) = σFrm(L(R), L) as ∇[L] ∼= L;

• M(C(L)) = F(L);

• A measurable function f : L(R)→ L preserves all joins despite the fact

that L has not necessarily arbitrary joins, that is, for any A ⊆ L(R),∨
a∈A

f(a) exists in L and
∨
a∈A

f(a) = f
( ∨
a∈A

a
)
.
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Finite valued case

Restricting to the finite-valued case, we introduce the classes

LM(L) := LM(L) ∩ F(L) (of lower measurable real functions);

UM(L) := UM(L) ∩ F(L) (of upper measurable real functions);

M(L) := M(L) ∩ F(L) (of measurable real functions).

We have

M(L) ⊆ F(L)

⊆ ⊆
M(L) ⊆ F(L).
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σ-scales



Aside

In a frame L we have:

extended scales (maps σ : Q→ L s.t. σ(r) ≺ σ(s) whenever r < s)

generating continuous extended real functions, and

scales (extended scales σ : Q→ L s.t.
∨
r∈Q σ(r) = 1 =

∨
r∈Q σ(r)∗)

generating continuous real functions.

Recall:

a ≺ b ≡ a∗ ∨ b = 1

≡ ∃u ∈ L : a ∧ u = 0 and u ∨ b = 1.

a≺≺ b ≡ ∃aq ∈ L, q ∈ [0, 1] ∩Q : a0 = a, a1 = b and ap ≺ aq (p < q).
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σ-scales

Definition: A map ϕ : Q→ L is a σ-scale in L (or an ascending

σ-scale) if there exists a family (cr)r∈Q of elements of L such that

ϕ(s) ∧ cr = 0 whenever s ≤ r and

cr ∨ ϕ(s) = 1 whenever r < s.

Furthermore, we say that ϕ is finite if
∨
r∈Q ϕ(r) = 1 =

∨
r∈Q cr.
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σ-scales

Proposition
Given a map ϕ : Q→ L:

ϕ is a σ-scale iff ϕ(r) ≺ ϕ(s) whenever r < s.

ϕ is a finite σ-scale iff ϕ is a σ-scale such that
∨
r∈Q ϕ(r) = 1 and there

are crs ∈ L such that
∨
{crs | r, s ∈ Q, r < s} = 1, with ϕ(r) ∧ crs = 0

and crs ∨ ϕ(s) = 1 whenever r < s.

CONSEQUENTLY: If L is a frame, then

(1) σ-scales in L are precisely the extended scales in L.

(2) finite σ-scales in L are precisely the scales in L.
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σ-scales

Proposition: Let L be a σ-frame. Given a σ-scale ϕ : Q→ L and a

family (cr)r∈Q in Cϕ, the map f : L(R)→ L determined by

f(p,—) =
∨
r>p

cr and f(—, q) =
∨
r<q

ϕ(r) (p, q ∈ Q)

is a measurable function on L. Moreover, if ϕ is finite, then f is a

finite-valued function.

REMARK: As F(L) = M(C(L)) and F(L) = M(C(L)), σ-scales and finite

σ-scales in C(L) generate extended real and real-valued functions on L.
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Insertion, extension and

separation results



Katětov relation

Definition: A Katětov relation is a binary relation b on a lattice L

satisfying the following conditions for all a, b, a′, b′ ∈ L:

(K1) a b b⇒ a ≤ b;
(K2) a′ ≤ a, a b b, b ≤ b′ ⇒ a′ b b′;

(K3) a b b, a′ b b⇒ (a ∨ a′) b b;

(K4) a b b, a b b′ ⇒ a b (b ∧ b′);
(K5) a b b⇒ ∃c ∈ L : a b c b b.

Katětov Lemma: Let b be a Katětov relation on L and � a transitive

and irreflexive (i.e, a relation that is not reflexive) relation on a countable

set D. Consider two families (ad)d∈D and (bd)d∈D of elements of L such

that

d1 � d2 implies ad2 ≤ ad1 , bd2 ≤ bd1 and ad2 b bd1 .

Then there exists a family (cd)d∈D in L such that

d1 � d2 implies cd2 b cd1 , ad2 b cd1 and cd2 b bd1 .
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The relations bM and bM

For any θA, θB ∈ C(L), define

θA bM θB ≡ ∃ f ∈ M(L) : θA ⊆ f(p,—)∗ and f(—, q) ⊆ θB for some p < q.

We write θA bM θB whenever f ∈ M(L).

Lemma: For any θA, θB ∈ C(L) we have:

(1) θA bM θB if and only if there is some f ∈ M(L) such that

θA ⊆ f(0,—)∗ and f(—, 1) ⊆ θB . Moreover, θA bM θB if and only

if such f is finite-valued.

(2) If θA bM θB then θ∗B bM θ∗A. In particular, if θA bM θB then

θ∗B bM θ∗A.

Proposition: Both bM and bM are Katětov relations on C(L).
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Separating relations on C(L)

Given a σ-frame L, a relation R ⊆ C(L) is separating if θAR θB implies

the existence of a, b ∈ L such that θA ⊆ ∆a ⊆ θB and θA ⊆ ∇b ⊆ θB .

Proposition: Let L be a σ-frame, ϕ a σ-scale in C(L) and R a

separating relation on C(L) such that ϕ(r)R ϕ(s) whenever r < s. Then

the function f : L(R)→ C(L) generated by ϕ is measurable. In

particular, if ϕ is finite, then f is finite-valued.
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Basic Insertion Theorem

Basic Insertion Theorem: Given functions g, h : L(R)→ C(L) on a

σ-frame L such that g ≤ h, the following statements are equivalent:

(i) There exists a measurable function f : L(R)→ L such that

g ≤ f ≤ h.

(ii) For each p < q, h(p,—)∗ bM g(—, q).

(iii) There exist σ-scales ϕ1 and ϕ2 generating g and h, respectively,

such that ϕ2(r) bM ϕ1(s) whenever r < s.

(iv) There exist σ-scales ϕ1 and ϕ2 generating g and h, respectively, and

a separating Katětov relation R on C(L) such that ϕ2(r)R ϕ1(s)

whenever r < s.

Corollary: Let θA, θB be complemented congruences on a σ-frame L

such that θA ⊆ θB . There exists a measurable function f : L(R)→ L

satisfying χθA ≤ f ≤ χθB if and only if θ∗B bM θ∗A.
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An extension condition

Consider a σ-sublocale S of L and the σ-frame homomorphism

qS : C(L)→ C(S) given by qS(θ) = θ ∨ θS .

Definition: Let f : L(R)→ C(S) be a function on S. A function

f̃ : L(R)→ C(L) is an extension of f over L if f = qS ◦ f̃ .

Proposition: Let S be a complemented σ-sublocale of a σ-locale L and

let f : L(R)→ S be a measurable function such that 0S ≤ f ≤ 1S . The

following statements are equivalent:

(i) f has a finite-valued measurable extension over L.

(ii) For each p < q, f(p,—)∗L bM f(—, q) in C(L).
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A separation condition

Proposition: Given a σ-frame L and closed congruences ∇a ⊆ ∇b, there

exists a measurable f : L(R)→ L satisfying χ∇a
≤ f ≤ χ∇b

if and only

if a≺≺ b.

Proposition: Given a σ-frame L and open congruences ∆a ⊆ ∆b, there

exists a measurable f : L(R)→ L satisfying χ∆a
≤ f ≤ χ∆b

if and only

if b≺≺ a.
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For normal and extremally disconnected σ-frames

Consider the relations bN and bD on C(L) given by

θA bN θB ≡ ∃ u, v ∈ L : θA ⊆ ∆u ⊆ ∇v ⊆ θB
and θA bD θB ≡ ∃ u, v ∈ L : θA ⊆ ∇u ⊆ ∆v ⊆ θB .

REMARK:

L normal ⇒bN is a is a separating Katětov relation

L extremally disconnected ⇒bD is a is a separating Katětov relation

Lemma: For any σ-frame L, bM ⊆ bN ∩ bD.
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Characterisation of normality

Theorem The following statements are equivalent for a σ-frame L.

(i) L is normal, i.e., for all a, b ∈ L,

a ∨ b = 1⇒ ∃u, v ∈ L : u ∧ v = 0 and a ∨ u = 1 = b ∨ v.

(ii) (Insertion) For any g ∈ UM(L) and h ∈ LM(L) such that g ≤ h,

there exists an f ∈ M(L) such that g ≤ f ≤ h.

(iii) (Insertion) For any g ∈ UM(L) and h ∈ LM(L) such that g ≤ h,

there exists an f ∈ M(L) such that g ≤ f ≤ h.

(iv) (Separation) For every a, b ∈ L, a ∨ b = 1 implies that ∆a bM ∇b.
(v) (Extension) For each closed σ-sublocale S of L, every f ∈ M(S)

such that 0S ≤ f ≤ 1S has a finite-valued measurable extension

over L.
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Characterisation of extremally disconnectedness

Theorem The following statements are equivalent for a σ-frame L.

(i) L is extremally disconnected, i.e., for all a, b ∈ L

a ∧ b = 0⇒ ∃u, v ∈ L : u ∨ v = 1 and a ∧ u = 0 = b ∧ v.

(ii) (Insertion) For any g ∈ LM(L) and h ∈ UM(L) such that g ≤ h,

there exists an f ∈ M(L) such that g ≤ f ≤ h.

(iii) (Insertion) For any g ∈ LM(L) and h ∈ UM(L) such that g ≤ h,

there exists an f ∈ M(L) such that g ≤ f ≤ h.

(iv) (Separation) For every a, b ∈ L, a ∧ b = 0 implies that ∇a bM ∆b.

(v) (Extension) For each open σ-sublocale S of L, every f ∈ M(S) such

that 0S ≤ f ≤ 1S has a finite-valued measurable extension over L.
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Characterisation of F-perfectness

Theorem: The following statements are equivalent for a σ-frame L.

(i) L is F-perfect, i.e., for each a ∈ L there is a sequence (ai)i∈N ⊆ L
such that ∆a =

∧
i∈N∇ai .

(ii) (Insertion) For any −u, l ∈ LM(L) such that l and −u are sum

compatible and 0 ≤ l − u, there exist u1 ∈ UM(L) and l1 ∈ LM(L)

such that 0 ≤ u1 ≤ l − u, u− l + u1 ≤ l1 ≤ 0 and

(l − u)(0,—)∗ = u1(0,—)∗ = (−l1)(0,—)∗.

(iii) (Insertion) For any u ∈ UM(L) and l ∈ LM(L) such that u ≤ l,
there exist u′ ∈ UM(L) and l′ ∈ LM(L) such that u ≤ u′ ≤ l′ ≤ l
and

(u′ − u)(0,—)∗ = (l − l′)(0,—)∗ = (l − u)(0,—)∗.
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Characterisation of F-perfectness

(iv) (Extension) For each closed σ-sublocale S of L, every f ∈ M(S)

with 0S ≤ f ≤ 1S has an upper measurable extension

u′ : L(R)→ C(L) and a lower measurable extension

l′ : L(R)→ C(L) such that 0 ≤ u′ ≤ l′ ≤ 1 and

θ∗S ∨ u′(0,—)∗ = θ∗S ∨ l′(—, 1)∗ = θ∗S .

(v) (Separation) For any a, b ∈ L such that a ∨ b = 1, there are

u′ ∈ UM(L) and l′ ∈ LM(L) such that 0 ≤ u′ ≤ l′ ≤ 1,

u′(0,—)∗ ∨ l′(—, 1)∗ ⊆ ∆a∧b,

∆a ⊆ u′(p,—) ∧ l′(—, q) for all p < 0, q > 0,

and ∆b ⊆ u′(p,—) ∧ l′(—, q) for all p < 1, q > 1.
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Characterisation of G-perfectness

Theorem: The following statements are equivalent for a σ-frame L.

(i) L is G-perfect, i.e., for each a ∈ L there is a sequence (ai)i∈N ⊆ L
such that ∇a =

∨
i∈N ∆ai .

(ii) (Insertion) For any −u, l ∈ LM(L) such that l and −u are sum

compatible and 0 ≤ l − u, there exist u1 ∈ UM(L) and l1 ∈ LM(L)

such that 0 ≤ u1 ≤ l − u, u− l + u1 ≤ l1 ≤ 0 and

(l − u)(0,—) = u1(0,—) = (−l1)(0,—).

(iii) (Insertion) For any u ∈ UM(L) and l ∈ LM(L) such that u ≤ l,
there exist u′ ∈ UM(L) and l′ ∈ LM(L) such that u ≤ u′ ≤ l′ ≤ l
and

(u′ − u)(0,—) = (l − l′)(0,—) = (l − u)(0,—).
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Characterisation of G-perfectness

(iv) (Extension) For each closed σ-sublocale S of L, every f ∈ M(S)

with 0S ≤ f ≤ 1S has an upper measurable extension

u′ : L(R)→ C(L) and a lower measurable extension

l′ : L(R)→ C(L) such that 0 ≤ u′ ≤ l′ ≤ 1 and

θS ∧ u′(0,—) = θS ∧ l′(—, 1) = θS .

(v) (Separation) For any a, b ∈ L such that a ∨ b = 1, there are

u′ ∈ UM(L) and l′ ∈ LM(L) such that 0 ≤ u′ ≤ l′ ≤ 1,

∇a∧b ⊆ u′(0,—) ∧ l′(—, 1),

∆a ⊆ u′(p,—) ∧ l′(—, q) for all p < 0, q > 0,

and ∆b ⊆ u′(p,—) ∧ l′(—, q) for all p < 1, q > 1.
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Characterisation of perfect normality

Theorem: The following statements are equivalent for a σ-frame L.

(i) L is perfectly normal, i.e., normal and F-perfect (≡ G-perfect).

(ii) L is regular, i.e., ∀a ∈ L, a =
∨
n∈N an, with an ≺ a.

(iii) (Insertion) For any u ∈ UM(L) and l ∈ LM(L) such that u ≤ l,
there exists an f ∈ M(L) such that u ≤ f ≤ l and

(f − u)(0,—) = (l − f)(0,—) = (l − u)(0,—).

(iv) (Extension) For each closed σ-sublocale S of L, every f ∈ M(S)

with 0S ≤ f ≤ 1S has a measurable extension f̃ : L(R)→ L such

that
θS ⊆ f̃(0,—) ∧ f̃(—, 1).

(v) (Separation) For every a, b ∈ L such that a ∨ b = 1, there exists an

f ∈ M(L) such that 0 ≤ f ≤ 1,

∆b ⊆ f(p,—) ∧ f(—, q) for all p < 1, q > 1,

∆a ⊆ f(p,—) ∧ f(—, q) for all p < 0, q > 0,

and ∇a∧b ⊆ f(0,—) ∧ f(—, 1). 24



Summing up

F-perfectness + Normality = Perfect normality

insertion insertion insertion

separation insertion separation

extension insertion extension
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