Revisiting localic T_1 **-type separation**

A day on Pointfree Topology Celebrating Jorge Picado's 60th birthday

Igor Arrieta

University of Birmingham Joint work with Jorge Picado and Aleš Pultr

UNIVERSITY^{OF} BIRMINGHAM

A T_0 -space X is T_1 iff	Analogy for a locale L
Every open subspace is a union of closed subspaces	Every open sublocale is a join of closed sublocales Subfit
Every (closed) subspace is saturated	Every (closed) sublocale is fitted Fit
Every point is closed	Every one-point sublocale is closed T1 -locale
Every point is saturated	Every one-point sublocale is fitted pt-fit
For any space Y and any continuous $f, g: Y \rightarrow X$, $f \leq g \implies f = g$	For any frame <i>M</i> and any $f,g: L \rightarrow M$ in Frm, $f \leq g \implies f = g$ Totally unordered
The diagonal is saturated in $X \times X$	The diagonal is fitted in $L \oplus L$ \mathcal{F} -separated

Subfitness:

$a \not\leq b \implies \exists c \in L : a \lor c = 1 \neq b \lor c$

Very useful property in pointfree topology. A few examples:

- Subfit + normal \implies completely regular.
- Under subfitness, a frame homomorphism is open iff it has a left adjoint.
- Under subfitness, one-to-one frame homomorphisms are exactly the codense ones ($h(a) = 1 \implies a = 1$).
- Closed surjections are not always regular epimorphisms in Loc. However, under subfitness, they are.
- A frame quasi-admits a nearness iff it is subfit.

However, it is not closed under products nor sublocales.

Fitness:

$$a \not\leq b \implies \exists c \in L : a \lor c = 1, c \to b \neq b$$

The hereditary variant of subfitness. Actually fit locales are closed under all limits in Loc. Already quite close to regularity.

*T*₁**-locales and pt-fit locales**: Too point dependent; however useful as a weak separation property in the study of (non-)spatiality. Implied by several genuinely pointfree axioms.

Totally unordered locales (T_U **)**: A natural property, well-behaved categorically, but not well understood. It is implied by both Hausdorff-type axioms and T_1 -type axioms.

 \mathcal{F} -separatedness: The natural closure-theoretic T_1 -type separation. Excellent categorical properties. It is in a pleasant parallel with the strong Hausdorff property.

Other properties:

- Weak subfitness: $a \neq o \implies \exists c \neq 1 : a \lor c = 1$.
- Prefitness: $a \neq o \implies \exists c \neq o : a \lor c^* = 1$.

Closed hereditary prefitness = fitness;

Closed hereditary weak subfitness = subfitness.

\mathcal{F} -separation and strong Hausdorff

Let C be a category with a proper factorization system $(\mathcal{E}, \mathcal{M})$ and a closure operator c. An object is *c*-separated if the diagonal $\Delta_X : X \to X \times X$ is *c*-closed.

If $\mathcal{C} = Loc$, we consider the following two closure operators:

If c = usual closure

$$\mathsf{S}\mapsto \overline{\mathsf{S}}=\bigcap_{\mathsf{S}\subseteq\mathfrak{c}(a)}\mathfrak{c}(a).$$

Then *c*-separated objects = strongly Hausdorff locales (i.e. locales with closed diagonal).

• If *c* = **fitting operator**

$$\mathsf{S}\mapsto\mathsf{S}^\circ=igcap_{\mathsf{S}\subseteq\mathfrak{o}(a)}\mathfrak{o}(a).$$

Then *c*-separated objects = \mathcal{F} -separated locales (i.e. locales with fitted diagonal).

Because of general categorical results, we have the following:

Proposition

Strongly Hausdorff (resp. *F*-separated locales) are closed under mono-sources in Loc. In particular,

- They are closed under limits in Loc;
- If M → L is a monomorphism in Loc and L is strongly Haudorff (resp. *F*-separated), then so is M.

In Loc, the structure of monorphisms is fairly wild; and so this property is somewhat stronger than heredity under sublocales (=regular monomorphisms)!

Examples of the strongly Hausdorff- \mathcal{F} -separated duality: Dowker-Strauss characterizations

Strong Hausdorff

Let $h, k: L \rightarrow M$ be frame homomorphisms. We say that (h, k)**respect disjoint pairs** if whenever $D = \{a, b\}$ with $\bigwedge D = 0$, then

$$\bigwedge_{x\in D}h(x)\vee k(x)=0.$$

\mathcal{F} -separated

Let $h, k: L \rightarrow M$ be frame homomorphisms. We say that (h, k)**respect covers** if whenever $C \subseteq L$ with $\bigvee C = 1$, then

$$\bigvee_{x\in C} h(x) \wedge k(x) = 1.$$

Theorem (Dowker-Strauss)

A frame L is strongly Hausdorff if and only if no distinct frame homomorphisms $h, k: L \rightarrow M$ respect disjoint pairs.

Theorem

A frame L is \mathcal{F} -separated if and only if no distinct frame homomorphisms h, k: L \rightarrow M respect covers.

Examples of the strongly Hausdorff- \mathcal{F} -separated duality: relaxed morphisms

Strong Hausdorff

- A map $h: L \to M$ between frames is a **weak homomorphism** if
 - (1) it is a morphism in Sup,

(2) h(1) = 1, and

(3) it preserves disjoint pairs A frame *L* has property **(W)** if every weak homomorphism $h: L \rightarrow M$ is a frame homomorphism.

Theorem (Banaschewski, Pultr)

Strong Hausdorff \equiv (T_U) + (W).

\mathcal{F} -separated

A map $h: L \to M$ between frames is an **almost homomorphism** if

(1) it is a morphism in PreFrm,

(2)
$$h(0) = 0$$
, and

(3) it preserves covers

A frame L has property (A) if every almost homomorphism $h: L \rightarrow M$ is a frame homomorphism.

Theorem

$$\mathcal{F}\text{-separated} \equiv (T_U)$$
 + (A).

Strong Hausdorff L	\mathcal{F} -separated L
No distinct pair of frame homomorphisms $f, g: L \rightarrow M$ preserves disjoint pairs	No distinct pair of frame homomorphisms $f, g: L \rightarrow M$ preserves covers
Strong Hausdorff implies (<i>T_U</i>)	\mathcal{F} -separated implies (T_U)
Strongly Hausdorff = $(T_U) + (W)$	\mathcal{F} -separated = (T_U) + (A)
Hereditary normality \Longrightarrow (W)	Hereditary extremal disconnectedness \implies (A)
Dwn(X) satisfies (W) iff it is hereditarily normal	Dwn(X) satisfies (A) iff it is hereditarily extremally disconnected
It implies the conservative Hausdorff axiom (H): If $1 \neq a \leq b$, then $\exists u, v \in L$: $u \wedge v = 0, u \leq a, v \leq b$	It implies a certain new property (F): If $1 \neq a \leq b$, then $\exists u, v \in L$: $u \lor v = 1, u \rightarrow a \leq a, v \rightarrow b \leq b$

Reviewing localic T_1 and T_2 separation

The only implications that hold are the ones that follow from the diagram!

Let C be a finitely complete category with a proper factorization system $(\mathcal{E}, \mathcal{M})$ and c a closure operator in C. An object X of C is *c***-compact** if the projection

$$\pi_{\mathbf{2}} \colon \mathbf{X} \times \mathbf{Y} \longrightarrow \mathbf{Y}$$

is c-closed for any object Y.

 In Top, c=usual Kuratowski closure, c-compact spaces=compact spaces.

In Loc, *c*= usual closure, *c*-compact locales=compact locales.

• In Top, *c* = saturation closure, then any topological space is *c*-compact! But its proof uses the fact that the subobject lattice is completely distributive...

If $c = \mathcal{F}$ is the fitting closure operator, what are the \mathcal{F} -compact objects in Loc?

The situation in Loc is very different from that in Top:

Proposition

If X is a Hausdorff topological space such that $\Omega(X)$ is fit, then $\Omega(X)$ is *F*-compact if and only if X is finite.

Hence, no infinite regular space can be \mathcal{F} -compact.

However, there is still an interesting class of spaces (locales) that are $\mathcal{F}\text{-}\text{compact.}$

💧 A. H. Stone

Hereditarily compact spaces

American Journal of Mathematics 82 (1960), 900-916 .

A space is **semi-irreducible** if every pairwise-disjoint family of nonempty open sets is finite.

Irreducible spaces and hereditarily compact spaces are semi-irreducible.

For locales the analogous property was introduced in

T. Dube Irreducibility in pointfree topology Quaestiones Mathematicae 27 (2004), 231-241.

We have the following positive result.

Proposition

Every semi-irreducible locale is *F*-compact.

Conjecture: A locale is semi-irreducible iff it is *F*-compact.

Equivalent conjecture: A Boolean locale which is \mathcal{F} -compact must be finite (cf. the fact that a Boolean locale which is compact must be finite).

Happy birthday, Jorge!

