The geometry of locale maps via Galois adjunctions

João Areias

12 October 2023

(日)

The geometry of locale maps via Galois adjunctions

Given two partially ordered sets X and Y, a Galois adjunction between them consists of a pair of order-preserving maps $f: X \to Y$ and $g: Y \to X$ such that

$$f(x) \leq y \iff x \leq g(y)$$

4 E 🕨 4 E 🕨

for all $x \in X$ and $y \in Y$.

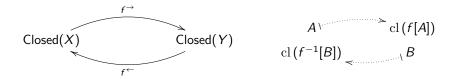
Given two partially ordered sets X and Y, a Galois adjunction between them consists of a pair of order-preserving maps $f: X \to Y$ and $g: Y \to X$ such that

$$f(x) \leq y \iff x \leq g(y)$$

for all $x \in X$ and $y \in Y$. One calls f left adjoint to g and g right adjoint to f and writes $f \dashv g$.

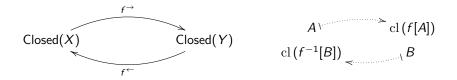
< 三→ < 三→

Let $f: X \rightarrow Y$ be a function between topological spaces and define the pair of assignments



< ∃ →

Let $f: X \rightarrow Y$ be a function between topological spaces and define the pair of assignments



글 🕨 🖌 글 🕨

Then it is very easy to check that

f is continuous iff $(f^{\rightarrow}, f^{\leftarrow})$ is an adjoint pair.

 $\bigcap \{ \mathfrak{c}(a) \in \mathfrak{c}L \mid S \subseteq \mathfrak{c}(a) \} = \mathfrak{c}(\bigvee \{ a \in L \mid S \subseteq \mathfrak{c}(a) \}) = \mathfrak{c}(\bigwedge S).$

<ロト <問 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\bigcap \{ \mathfrak{c}(a) \in \mathfrak{c}L \mid S \subseteq \mathfrak{c}(a) \} = \mathfrak{c}(\bigvee \{ a \in L \mid S \subseteq \mathfrak{c}(a) \}) = \mathfrak{c}(\bigwedge S).$

- ∢ ⊒ ▶

This defines a map from $\mathcal{P}(L)$ to $\mathfrak{c}L$ with the following properties:

 $\bigcap \{ \mathfrak{c}(a) \in \mathfrak{c}L \mid S \subseteq \mathfrak{c}(a) \} = \mathfrak{c}(\bigvee \{ a \in L \mid S \subseteq \mathfrak{c}(a) \}) = \mathfrak{c}(\bigwedge S).$

This defines a map from $\mathcal{P}(L)$ to $\mathfrak{c}L$ with the following properties:

• order-preserving: $S \subseteq T \Rightarrow \operatorname{cl} S \subseteq \operatorname{cl} T$.

 $\bigcap \{ \mathfrak{c}(a) \in \mathfrak{c}L \mid S \subseteq \mathfrak{c}(a) \} = \mathfrak{c}(\bigvee \{ a \in L \mid S \subseteq \mathfrak{c}(a) \}) = \mathfrak{c}(\bigwedge S).$

This defines a map from $\mathcal{P}(L)$ to $\mathfrak{c}L$ with the following properties:

- order-preserving: $S \subseteq T \Rightarrow \operatorname{cl} S \subseteq \operatorname{cl} T$.
- idempotent: $\operatorname{cl}(\operatorname{cl} S) = \operatorname{cl} S$.

 $\bigcap \{ \mathfrak{c}(a) \in \mathfrak{c}L \mid S \subseteq \mathfrak{c}(a) \} = \mathfrak{c}(\bigvee \{ a \in L \mid S \subseteq \mathfrak{c}(a) \}) = \mathfrak{c}(\bigwedge S).$

イロト 不同 トイヨト イヨト

This defines a map from $\mathcal{P}(L)$ to $\mathfrak{c}L$ with the following properties:

- order-preserving: $S \subseteq T \Rightarrow \operatorname{cl} S \subseteq \operatorname{cl} T$.
- idempotent: $\operatorname{cl}(\operatorname{cl} S) = \operatorname{cl} S$.
- extensive: $S \subseteq \operatorname{cl} S$.

 $\bigcap \{ \mathfrak{c}(a) \in \mathfrak{c}L \mid S \subseteq \mathfrak{c}(a) \} = \mathfrak{c}(\bigvee \{ a \in L \mid S \subseteq \mathfrak{c}(a) \}) = \mathfrak{c}(\bigwedge S).$

This defines a map from $\mathcal{P}(L)$ to $\mathfrak{c}L$ with the following properties:

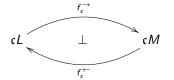
- order-preserving: $S \subseteq T \Rightarrow \operatorname{cl} S \subseteq \operatorname{cl} T$.
- idempotent: $\operatorname{cl}(\operatorname{cl} S) = \operatorname{cl} S$.
- extensive: $S \subseteq \operatorname{cl} S$.

Clearly, one has the equivalence

$$S \subseteq \operatorname{cl} T \Leftrightarrow \operatorname{cl} S \subseteq \operatorname{cl} T$$
 for every $T, S \subseteq L$.

(日)

For each plain map $f: L \rightarrow M$ between locales consider the following:



$$c(a)^{-1} cl(f[\mathfrak{c}(a)]) \\
 cl(f^{-1}[\mathfrak{c}(b)]) \\
 cl(b)$$

Adjoint pair I

Adjoint pair I

Proposition

Let $f: L \to M$ be a plain map between locales. The pair $(f_c^{\to}, f_c^{\leftarrow})$ is an adjoint pair if and only if f preserves arbitrary meets.

(日)

For any subset $S \subseteq L$, let int S denote the open sublocale $\bigvee \{ \mathfrak{o}(a) \in \mathfrak{o}L \mid \mathfrak{o}(a) \subseteq S \} = \mathfrak{o}(\bigvee \{ a \in L \mid \mathfrak{o}(a) \subseteq S \}).$

イロト イヨト イヨト イヨト

$$\bigvee \{\mathfrak{o}(a) \in \mathfrak{o}L \mid \mathfrak{o}(a) \subseteq S\} = \mathfrak{o}(\bigvee \{a \in L \mid \mathfrak{o}(a) \subseteq S\}).$$

- ∢ ⊒ →

This defines a mapping from $\mathcal{P}(L)$ to $\mathfrak{o}L$ with the following properties:

 $\bigvee \{\mathfrak{o}(a) \in \mathfrak{o}L \mid \mathfrak{o}(a) \subseteq S\} = \mathfrak{o}(\bigvee \{a \in L \mid \mathfrak{o}(a) \subseteq S\}).$

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 ● ○○

This defines a mapping from $\mathcal{P}(L)$ to $\mathfrak{o}L$ with the following properties:

• order-preserving: $S \subseteq T \Rightarrow \text{ int } S \subseteq \text{ int } T$.

 $\bigvee \{\mathfrak{o}(a) \in \mathfrak{o}L \mid \mathfrak{o}(a) \subseteq S\} = \mathfrak{o}(\bigvee \{a \in L \mid \mathfrak{o}(a) \subseteq S\}).$

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 ● ○○

This defines a mapping from $\mathcal{P}(L)$ to $\mathfrak{o}L$ with the following properties:

- order-preserving: $S \subseteq T \Rightarrow \text{ int } S \subseteq \text{ int } T$.
- idempotent: int (int S) = int S.

 $\bigvee \{\mathfrak{o}(a) \in \mathfrak{o}L \mid \mathfrak{o}(a) \subseteq S\} = \mathfrak{o}(\bigvee \{a \in L \mid \mathfrak{o}(a) \subseteq S\}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

This defines a mapping from $\mathcal{P}(L)$ to $\mathfrak{o}L$ with the following properties:

- order-preserving: $S \subseteq T \Rightarrow \text{ int } S \subseteq \text{ int } T$.
- idempotent: int (int S) = int S.
- not intensive: int $S \subseteq S$ doesn't always hold.

From now on we shall refer to subsets of L that are closed under meets as meet-subsets of L. The system of all meet-subsets in L will be denoted by

M(L).

글 🕨 🖌 글 🕨

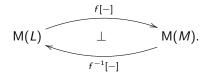
From now on we shall refer to subsets of L that are closed under meets as meet-subsets of L. The system of all meet-subsets in L will be denoted by

M(L).

4 E 🕨 4 E 🕨

Lemma

Let $f: L \to M$ be a meet-preserving map between locales and let $S \in M(L)$ and $T \in M(M)$. Then $f[S] \in M(M)$ and $f^{-1}[T] \in M(L)$ and we have again an adjunction



Lemma

Let $f: L \to M$ be a meet-preserving map between locales. Then $f^{-1}[0] = 0$ if and only if $f^{-1}[\mathfrak{c}(b)] \subseteq (int(f^{-1}[\mathfrak{o}(b)]))^c$ for every $b \in M$.

イロト 不同 トイヨト イヨト

э.

∃ <2 <</p>

(a) f⁻¹[c(b)] is closed for every b ∈ M.
(b) f⁻¹[0] = 0.
(c) f⁻¹[o(b)] ⊇ f⁻¹[c(b)]^c for every b ∈ M.

(a) f⁻¹[c(b)] is closed for every b ∈ M.
(b) f⁻¹[O] = O.
(c) f⁻¹[o(b)] ⊇ f⁻¹[c(b)]^c for every b ∈ M.

Using the previous lemma and the fact that $f^{-1}[\mathfrak{o}(b)]$ is a meet-subset we conclude that a map $f: L \to M$ is a localic map if and only if :

(a) f⁻¹[c(b)] is closed for every b ∈ M.
(b) f⁻¹[O] = O.
(c) f⁻¹[o(b)] ⊇ f⁻¹[c(b)]^c for every b ∈ M.

Using the previous lemma and the fact that $f^{-1}[\mathfrak{o}(b)]$ is a meet-subset we conclude that a map $f: L \to M$ is a localic map if and only if :

(1)
$$f^{-1}[\mathfrak{c}(b)]$$
 is closed for every $b \in M$.

(a) f⁻¹[c(b)] is closed for every b ∈ M.
 (b) f⁻¹[O] = O.

(c)
$$f^{-1}[\mathfrak{o}(b)] \supseteq f^{-1}[\mathfrak{c}(b)]^{c}$$
 for every $b \in M$.

Using the previous lemma and the fact that $f^{-1}[\mathfrak{o}(b)]$ is a meet-subset we conclude that a map $f: L \to M$ is a localic map if and only if :

글 🕨 🖌 글 🕨

(1)
$$f^{-1}[\mathfrak{c}(b)]$$
 is closed for every $b \in M$.
(11) $f^{-1}[\mathfrak{c}(b)] \subseteq (\operatorname{int} (f^{-1}[\mathfrak{o}(b)]))^{c}$.

(a) $f^{-1}[\mathfrak{c}(b)]$ is closed for every $b \in M$.

(b)
$$f^{-1}[0] = 0.$$

(c)
$$f^{-1}[\mathfrak{o}(b)] \supseteq f^{-1}[\mathfrak{c}(b)]^{c}$$
 for every $b \in M$.

Using the previous lemma and the fact that $f^{-1}[\mathfrak{o}(b)]$ is a meet-subset we conclude that a map $f: L \to M$ is a localic map if and only if :

(1)
$$f^{-1}[\mathfrak{c}(b)]$$
 is closed for every $b \in M$.
(11) $f^{-1}[\mathfrak{c}(b)] \subseteq (\operatorname{int} (f^{-1}[\mathfrak{o}(b)]))^{c}$.
(111) $\operatorname{int} (f^{-1}[\mathfrak{o}(b)]) \supseteq f^{-1}[\mathfrak{c}(b)]^{c}$ for every $b \in M$.

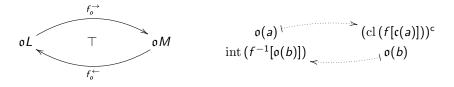
Localic Maps

Proposition

A plain map $f: L \to M$ between locales is a localic map if and only if $(int (f^{-1}[\mathfrak{o}(b)]))^{c} = f^{-1}[\mathfrak{c}(b)]$ for every $b \in M$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲ 重 - のへの

We now consider, for each (plain) map $f: L \to M$ between locales, the mappings f_o^{\to} and f_o^{\leftarrow} given by



Adjoint pair II

Adjoint pair II

Theorem

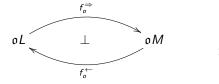
Let $f: L \to M$ be an order-preserving map between locales. The pair $(f_o^{\leftarrow}, f_o^{\rightarrow})$ is an adjoint pair if and only if f is a localic map.

イロト イヨト イヨト イヨト

We will speak about open maps in a broad sense as plain maps $f: L \to M$ between locales such that the image $f[\mathfrak{o}(a)]$ of every open sublocale is still open.

イロト イポト イヨト イヨト

As another variant, replace f_{o}^{\rightarrow} by the following f_{o}^{\Rightarrow} :



Adjoint pair III

Adjoint pair III

Theorem

Let $f: L \to M$ be a meet-preserving map. The pair $(f_{\mathfrak{o}}^{\Rightarrow}, f_{\mathfrak{o}}^{\leftarrow})$ is an adjunction if and only if f is open.

(日)

э.

Combining adjunctions II and III we get:

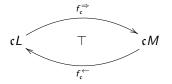
Corollary

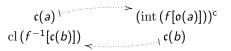
An order-preserving map $f: L \rightarrow M$ is an open localic map if and only if

$$f_{\mathfrak{o}}^{\Rightarrow} \dashv f_{\mathfrak{o}}^{\leftarrow} \dashv f_{\mathfrak{o}}^{\rightarrow}.$$

Adjoint pair IV

Finally, consider the mappings





Adjoint pair IV

Adjoint pair IV

Theorem

Let $f: L \to M$ be a meet-preserving map between locales. The pair $(f_c^{\leftarrow}, f_c^{\Rightarrow})$ is an adjunction if and only if f is an open localic map.

イロト イヨト イヨト イヨト

Combining adjunctions I and IV we obtain:

Corollary A plain map $f: L \to M$ is an open localic map if and only if $f_c^{\to} \dashv f_c^{\leftarrow} \dashv f_c^{\Rightarrow}$.

イロト 不得 トイヨト イヨト