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Motivation

Given two partially ordered sets X and Y, a Galois adjunction between
them consists of a pair of order-preserving maps f: X — Y and
g: Y — X such that

f(x) <y < x<gl(y)

forallxe X andy € Y.
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Motivation

Given two partially ordered sets X and Y, a Galois adjunction between
them consists of a pair of order-preserving maps f: X — Y and
g: Y — X such that

f(x) <y < x<gl(y)

forall x € X and y € Y. One calls f left adjoint to g and g right adjoint
to f and writes f 4 g.
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Motivation

Let f: X — Y be a function between topological spaces and define the
pair of assignments

f“?
/\ R ~ .
Closed(X) Closed(Y) A L(fTA])
T~ U GV
f‘(*
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Motivation

Let f: X — Y be a function between topological spaces and define the
pair of assignments

f“?
/\ R ~ .
Closed(X) Closed(Y) A L(fTA])
T~ U GV
f‘(*

Then it is very easy to check that
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Closure operator

For any subset S C L, let c1 S denote the closed sublocale

MHe(a) el [SCSe(a)} =c(V{ac LS Cc(a)}) =c(AS).
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Closure operator

For any subset S C L, let c1 S denote the closed sublocale

MHe(a) el [SCSe(a)} =c(V{ac LS Cc(a)}) =c(AS).

This defines a map from P(L) to ¢L with the following properties:
e order-preserving: SC T = clSCclT.
® idempotent: cl(clS) =clS.
® extensive: S CclS.

Clearly, one has the equivalence

SCcT<cdSCcT forevery T,S C L.
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Adjoint pair |

For each plain map 7: L — M between locales consider the following:

. /:\ " c(a)\ ...................... Cl(f[c(a)])
- ACO) )

Adjoint pair |
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Adjoint pair |

Proposition
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Interior operator

For any subset S C L, let int S denote the open sublocale

VH{o(a) c oL |o(a) € S} =o(V{a e L]o(a) € S})
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Interior operator

For any subset S C L, let int S denote the open sublocale

VH{o(a) c oL |o(a) € S} =o(V{a e L]o(a) € S})

This defines a mapping from P(L) to oL with the following properties:
® order-preserving: SC T = intS Cint T.
e idempotent: int (int S) = int S.
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Interior operator

For any subset S C L, let int S denote the open sublocale

VH{o(a) c oL |o(a) € S} =o(V{a e L]o(a) € S})

This defines a mapping from P(L) to oL with the following properties:
® order-preserving: SC T = intS Cint T.
e idempotent: int (int S) = int S.
® not intensive: int S C S doesn't always hold.
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Interior operator

From now on we shall refer to subsets of L that are closed under meets as
meet-subsets of L. The system of all meet-subsets in L will be denoted by

M(L).
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Interior operator

From now on we shall refer to subsets of L that are closed under meets as
M(L).
Proposition

meet-subsets of L. The system of all meet-subsets in L will be denoted by
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M(L)
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€

-

M(M).




Lemma
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Localic Maps

A map f: L — M is a localic map if and only if the following conditions

hold:
(a) f~1[c(b)] is closed for every b € M.
(b) £-1[0] = O.

(c) f~o(b)] 2 f~e(b)]¢ for every b € M.
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Localic Maps

A map f: L — M is a localic map if and only if the following conditions

hold:
(a) f~1[c(b)] is closed for every b € M.
(b) £-1[0] = O.
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Localic Maps

A map f: L — M is a localic map if and only if the following conditions

hold:
(a) f~1[c(b)] is closed for every b € M.
(b) £-1[0] = O.

(c) f~o(b)] 2 f~e(b)]¢ for every b € M.
Using the previous lemma and the fact that f ~1[o(b)] is a meet-subset
we conclude that a map f: L — M is a localic map if and only if :

(1) f7[c(b)] is closed for every b € M.
(1) F=He(b)] € (int (F~*[o(b)]))°.
(1) int (Fo(b)]) 2 £~ c(b)]° for every b € M.
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Localic Maps

Proposition
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Adjoint pair Il

We now consider, for each (plain) map f: L — M between locales, the
mappings f,” and f given by

7
OL/;\ " 0(3) R - (C](f[c(a)]))c
- () ol

Adjoint pair Il
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Adjoint pair Il

Theorem
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Open Maps

We will speak about open maps in a broad sense as plain maps
f: L — M between locales such that the image f[o(a)] of every open
sublocale is still open.
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Adjoint pair Il

As another variant, replace f;” by the following f.;7:

fe
OL/J_\*OM o(a)t - (Fo(3)])
-~ (B el

Adjoint pair Il
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Adjoint pair Il

Theorem
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Combining adjunctions Il and Il we get:
Corollary
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Adjoint pair IV

Finally, consider the mappings

fc:>
CL/;\ " c(a) o - (int(flg(a)]))c
~ QB

Adjoint pair IV
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Adjoint pair IV

Theorem
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Open localic maps

Combining adjunctions | and IV we obtain:
Corollary
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